AQA C1 2007 June — Question 7

Exam BoardAQA
ModuleC1 (Core Mathematics 1)
Year2007
SessionJune
TopicInequalities

7 The quadratic equation $$( 2 k - 3 ) x ^ { 2 } + 2 x + ( k - 1 ) = 0$$ where \(k\) is a constant, has real roots.
  1. Show that \(2 k ^ { 2 } - 5 k + 2 \leqslant 0\).
    1. Factorise \(2 k ^ { 2 } - 5 k + 2\).
    2. Hence, or otherwise, solve the quadratic inequality $$2 k ^ { 2 } - 5 k + 2 \leqslant 0$$