4 A model helicopter takes off from a point \(O\) at time \(t = 0\) and moves vertically so that its height, \(y \mathrm {~cm}\), above \(O\) after time \(t\) seconds is given by
$$y = \frac { 1 } { 4 } t ^ { 4 } - 26 t ^ { 2 } + 96 t , \quad 0 \leqslant t \leqslant 4$$
- Find:
- \(\frac { \mathrm { d } y } { \mathrm {~d} t }\);
(3 marks) - \(\frac { \mathrm { d } ^ { 2 } y } { \mathrm {~d} t ^ { 2 } }\).
(2 marks)
- Verify that \(y\) has a stationary value when \(t = 2\) and determine whether this stationary value is a maximum value or a minimum value.
(4 marks) - Find the rate of change of \(y\) with respect to \(t\) when \(t = 1\).
- Determine whether the height of the helicopter above \(O\) is increasing or decreasing at the instant when \(t = 3\).