8. The functions \(f\) and \(g\) are defined by
$$\begin{array} { l l }
\mathrm { f } : x \rightarrow 2 x + \ln 2 , & x \in \mathbb { R } ,
\mathrm {~g} : x \rightarrow \mathrm { e } ^ { 2 x } , & x \in \mathbb { R } .
\end{array}$$
- Prove that the composite function gf is
$$\operatorname { gf } : x \rightarrow 4 \mathrm { e } ^ { 4 x } , \quad x \in \mathbb { R }$$
- In the space provided on page 19, sketch the curve with equation \(y = \operatorname { gf } ( x )\), and show the coordinates of the point where the curve cuts the \(y\)-axis.
- Write down the range of gf.
- Find the value of \(x\) for which \(\frac { \mathrm { d } } { \mathrm { d } x } [ \operatorname { gf } ( x ) ] = 3\), giving your answer to 3 significant figures.
Turn over
- (a) By writing \(\sin 3 \theta\) as \(\sin ( 2 \theta + \theta )\), show that
$$\sin 3 \theta = 3 \sin \theta - 4 \sin ^ { 3 } \theta$$ - Given that \(\sin \theta = \frac { \sqrt { } 3 } { 4 }\), find the exact value of \(\sin 3 \theta\).
2.
$$f ( x ) = 1 - \frac { 3 } { x + 2 } + \frac { 3 } { ( x + 2 ) ^ { 2 } } , x \neq - 2$$ - Show that \(\mathrm { f } ( x ) = \frac { x ^ { 2 } + x + 1 } { ( x + 2 ) ^ { 2 } } , x \neq - 2\).
- Show that \(x ^ { 2 } + x + 1 > 0\) for all values of \(x\).
- Show that \(\mathrm { f } ( x ) > 0\) for all values of \(x , x \neq - 2\).
3. The curve \(C\) has equation
$$x = 2 \sin y .$$ - Show that the point \(P \left( \sqrt { } 2 , \frac { \pi } { 4 } \right)\) lies on \(C\).
- Show that \(\frac { \mathrm { d } y } { \mathrm {~d} x } = \frac { 1 } { \sqrt { 2 } }\) at \(P\).
- Find an equation of the normal to \(C\) at \(P\). Give your answer in the form \(y = m x + c\), where \(m\) and \(c\) are exact constants.
4. (i) The curve \(C\) has equation
$$y = \frac { x } { 9 + x ^ { 2 } }$$
Use calculus to find the coordinates of the turning points of \(C\).
(ii) Given that
$$y = \left( 1 + \mathrm { e } ^ { 2 x } \right) ^ { \frac { 3 } { 2 } }$$
find the value of \(\frac { \mathrm { d } y } { \mathrm {~d} x }\) at \(x = \frac { 1 } { 2 } \ln 3\).
5.
\begin{figure}[h]
\captionsetup{labelformat=empty}
\caption{Figure 1}
\includegraphics[alt={},max width=\textwidth]{9527d80b-a2a2-442f-9e32-d8768fbbd01a-045_865_926_301_516}
\end{figure}
Figure 1 shows an oscilloscope screen.
The curve shown on the screen satisfies the equation
$$y = \sqrt { 3 } \cos x + \sin x$$ - Express the equation of the curve in the form \(y = R \sin ( x + \alpha )\), where \(R\) and \(\alpha\) are constants, \(R > 0\) and \(0 < \alpha < \frac { \pi } { 2 }\).
- Find the values of \(x , 0 \leqslant x < 2 \pi\), for which \(y = 1\).
- The function \(f\) is defined by
$$\mathrm { f } : x \mapsto \ln ( 4 - 2 x ) , \quad x < 2 \quad \text { and } \quad x \in \mathbb { R } .$$ - Show that the inverse function of f is defined by
$$\mathrm { f } ^ { - 1 } : x \mapsto 2 - \frac { 1 } { 2 } \mathrm { e } ^ { x }$$
and write down the domain of \(\mathrm { f } ^ { - 1 }\).
- Write down the range of \(\mathrm { f } ^ { - 1 }\).
- In the space provided on page 16, sketch the graph of \(y = f ^ { - 1 } ( x )\). State the coordinates of the points of intersection with the \(x\) and \(y\) axes.
The graph of \(y = x + 2\) crosses the graph of \(y = f ^ { - 1 } ( x )\) at \(x = k\).
The iterative formula
$$x _ { n + 1 } = - \frac { 1 } { 2 } e ^ { x _ { n } } , x _ { 0 } = - 0.3$$
is used to find an approximate value for \(k\).
- Calculate the values of \(x _ { 1 }\) and \(x _ { 2 }\), giving your answers to 4 decimal places.
- Find the value of \(k\) to 3 decimal places.
7.
$$f ( x ) = x ^ { 4 } - 4 x - 8$$
- Show that there is a root of \(\mathrm { f } ( x ) = 0\) in the interval \([ - 2 , - 1 ]\).
- Find the coordinates of the turning point on the graph of \(y = \mathrm { f } ( x )\).
- Given that \(\mathrm { f } ( x ) = ( x - 2 ) \left( x ^ { 3 } + a x ^ { 2 } + b x + c \right)\), find the values of the constants, \(a , b\) and \(c\).
- In the space provided on page 21, sketch the graph of \(y = \mathrm { f } ( x )\).
- Hence sketch the graph of \(y = | \mathrm { f } ( x ) |\).
- (i) Prove that
$$\sec ^ { 2 } x - \operatorname { cosec } ^ { 2 } x \equiv \tan ^ { 2 } x - \cot ^ { 2 } x$$
(ii) Given that
$$y = \arccos x , \quad - 1 \leqslant x \leqslant 1 \text { and } 0 \leqslant y \leqslant \pi ,$$ - express arcsin \(x\) in terms of \(y\).
- Hence evaluate \(\arccos x + \arcsin x\). Give your answer in terms of \(\pi\).
Turn over
- Find the exact solutions to the equations
- \(\ln x + \ln 3 = \ln 6\),
- \(\mathrm { e } ^ { x } + 3 \mathrm { e } ^ { - x } = 4\).
$$f ( x ) = \frac { 2 x + 3 } { x + 2 } - \frac { 9 + 2 x } { 2 x ^ { 2 } + 3 x - 2 } , \quad x > \frac { 1 } { 2 }$$ - Show that \(\mathrm { f } ( x ) = \frac { 4 x - 6 } { 2 x - 1 }\).
- Hence, or otherwise, find \(\mathrm { f } ^ { \prime } ( x )\) in its simplest form.
3. A curve \(C\) has equation
$$y = x ^ { 2 } \mathrm { e } ^ { x }$$ - Find \(\frac { \mathrm { d } y } { \mathrm {~d} x }\), using the product rule for differentiation.
- Hence find the coordinates of the turning points of \(C\).
- Find \(\frac { \mathrm { d } ^ { 2 } y } { \mathrm {~d} x ^ { 2 } }\).
- Determine the nature of each turning point of the curve \(C\).
4.
$$f ( x ) = - x ^ { 3 } + 3 x ^ { 2 } - 1$$ - Show that the equation \(\mathrm { f } ( x ) = 0\) can be rewritten as
$$x = \sqrt { } \left( \frac { 1 } { 3 - x } \right)$$
- Starting with \(x _ { 1 } = 0.6\), use the iteration
$$\left. x _ { n + 1 } = \sqrt { ( } \frac { 1 } { 3 - x _ { n } } \right)$$
to calculate the values of \(x _ { 2 } , x _ { 3 }\) and \(x _ { 4 }\), giving all your answers to 4 decimal places.
- Show that \(x = 0.653\) is a root of \(\mathrm { f } ( x ) = 0\) correct to 3 decimal places.
5. The functions \(f\) and \(g\) are defined by
$$\begin{array} { l l }
\mathrm { f } : x \mapsto \ln ( 2 x - 1 ) , & x \in \mathbb { R } , x > \frac { 1 } { 2 }
\mathrm {~g} : x \mapsto \frac { 2 } { x - 3 } , & x \in \mathbb { R } , x \neq 3
\end{array}$$ - Find the exact value of fg(4).
- Find the inverse function \(\mathrm { f } ^ { - 1 } ( x )\), stating its domain.
- Sketch the graph of \(y = | \mathrm { g } ( x ) |\). Indicate clearly the equation of the vertical asymptote and the coordinates of the point at which the graph crosses the \(y\)-axis.
- Find the exact values of \(x\) for which \(\left| \frac { 2 } { x - 3 } \right| = 3\).
- (a) Express \(3 \sin x + 2 \cos x\) in the form \(R \sin ( x + \alpha )\) where \(R > 0\) and \(0 < \alpha < \frac { \pi } { 2 }\).
- Hence find the greatest value of \(( 3 \sin x + 2 \cos x ) ^ { 4 }\).
- Solve, for \(0 < x < 2 \pi\), the equation
$$3 \sin x + 2 \cos x = 1$$
giving your answers to 3 decimal places.
- (a) Prove that
$$\frac { \sin \theta } { \cos \theta } + \frac { \cos \theta } { \sin \theta } = 2 \operatorname { cosec } 2 \theta , \quad \theta \neq 90 n ^ { \circ }$$ - On the axes on page 20, sketch the graph of \(y = 2 \operatorname { cosec } 2 \theta\) for \(0 ^ { \circ } < \theta < 360 ^ { \circ }\).
- Solve, for \(0 ^ { \circ } < \theta < 360 ^ { \circ }\), the equation
$$\frac { \sin \theta } { \cos \theta } + \frac { \cos \theta } { \sin \theta } = 3 ,$$
giving your answers to 1 decimal place.
\includegraphics[max width=\textwidth, alt={}, center]{9527d80b-a2a2-442f-9e32-d8768fbbd01a-063_899_1253_315_347}
8. The amount of a certain type of drug in the bloodstream \(t\) hours after it has been taken is given by the formula
$$x = D \mathrm { e } ^ { - \frac { 1 } { 8 } t } ,$$
where \(x\) is the amount of the drug in the bloodstream in milligrams and \(D\) is the dose given in milligrams.
A dose of 10 mg of the drug is given. - Find the amount of the drug in the bloodstream 5 hours after the dose is given. Give your answer in mg to 3 decimal places.
A second dose of 10 mg is given after 5 hours.
- Show that the amount of the drug in the bloodstream 1 hour after the second dose is 13.549 mg to 3 decimal places.
No more doses of the drug are given. At time \(T\) hours after the second dose is given, the amount of the drug in the bloodstream is 3 mg .
- Find the value of \(T\).
\end{table}
Paper Reference(s)
\section*{6665/01}
\section*{Edexcel GCE }
\begin{figure}[h]
\captionsetup{labelformat=empty}
\caption{Examiner's use only}
\includegraphics[alt={},max width=\textwidth]{9527d80b-a2a2-442f-9e32-d8768fbbd01a-079_97_309_495_1636}
\end{figure}
$$y = 4 \mathrm { e } ^ { 2 x + 1 }$$
The \(y\)-coordinate of \(P\) is 8 . - Find, in terms of \(\ln 2\), the \(x\)-coordinate of \(P\).
- Find the equation of the tangent to the curve at the point \(P\) in the form \(y = a x + b\), where \(a\) and \(b\) are exact constants to be found.
2.
$$f ( x ) = 5 \cos x + 12 \sin x$$
Given that \(\mathrm { f } ( x ) = R \cos ( x - \alpha )\), where \(R > 0\) and \(0 < \alpha < \frac { \pi } { 2 }\), - find the value of \(R\) and the value of \(\alpha\) to 3 decimal places.
- Hence solve the equation
$$5 \cos x + 12 \sin x = 6$$
for \(0 \leqslant x < 2 \pi\).
- Write down the maximum value of \(5 \cos x + 12 \sin x\).
- Find the smallest positive value of \(x\) for which this maximum value occurs.
3.
\begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{9527d80b-a2a2-442f-9e32-d8768fbbd01a-083_623_977_207_479}
\captionsetup{labelformat=empty}
\caption{Figure 1}
\end{figure}
Figure 1 shows the graph of \(y = f ( x ) , x \in \mathbb { R }\).
The graph consists of two line segments that meet at the point \(P\).
The graph cuts the \(y\)-axis at the point \(Q\) and the \(x\)-axis at the points \(( - 3,0 )\) and \(R\). Sketch, on separate diagrams, the graphs of
- \(y = | f ( x ) |\),
- \(y = \mathrm { f } ( - x )\).
Given that \(\mathrm { f } ( x ) = 2 - | x + 1 |\),
- find the coordinates of the points \(P , Q\) and \(R\),
- solve \(\mathrm { f } ( x ) = \frac { 1 } { 2 } x\).
4. The function \(f\) is defined by
$$f : x \mapsto \frac { 2 ( x - 1 ) } { x ^ { 2 } - 2 x - 3 } - \frac { 1 } { x - 3 } , \quad x > 3$$ - Show that \(\mathrm { f } ( x ) = \frac { 1 } { x + 1 } , \quad x > 3\).
- Find the range of f.
- Find \(\mathrm { f } ^ { - 1 } ( x )\). State the domain of this inverse function.
The function \(g\) is defined by
$$\mathrm { g } : x \mapsto 2 x ^ { 2 } - 3 , \quad x \in \mathbb { R } .$$
- Solve \(\mathrm { fg } ( x ) = \frac { 1 } { 8 }\).
5. (a) Given that \(\sin ^ { 2 } \theta + \cos ^ { 2 } \theta \equiv 1\), show that \(1 + \cot ^ { 2 } \theta \equiv \operatorname { cosec } ^ { 2 } \theta\). - Solve, for \(0 \leqslant \theta < 180 ^ { \circ }\), the equation
$$2 \cot ^ { 2 } \theta - 9 \operatorname { cosec } \theta = 3$$
giving your answers to 1 decimal place.
6. (a) Differentiate with respect to \(x\),
- \(\mathrm { e } ^ { 3 x } ( \sin x + 2 \cos x )\),
- \(x ^ { 3 } \ln ( 5 x + 2 )\).
Given that \(y = \frac { 3 x ^ { 2 } + 6 x - 7 } { ( x + 1 ) ^ { 2 } } , \quad x \neq - 1\),
- show that \(\frac { \mathrm { d } y } { \mathrm {~d} x } = \frac { 20 } { ( x + 1 ) ^ { 3 } }\).
- Hence find \(\frac { \mathrm { d } ^ { 2 } y } { \mathrm {~d} x ^ { 2 } }\) and the real values of \(x\) for which \(\frac { \mathrm { d } ^ { 2 } y } { \mathrm {~d} x ^ { 2 } } = - \frac { 15 } { 4 }\).
7.
$$f ( x ) = 3 x ^ { 3 } - 2 x - 6$$ - Show that \(\mathrm { f } ( x ) = 0\) has a root, \(\alpha\), between \(x = 1.4\) and \(x = 1.45\)
- Show that the equation \(\mathrm { f } ( x ) = 0\) can be written as
$$x = \sqrt { } \left( \frac { 2 } { x } + \frac { 2 } { 3 } \right) , \quad x \neq 0$$
- Starting with \(x _ { 0 } = 1.43\), use the iteration
$$x _ { \mathrm { n } + 1 } = \sqrt { } \left( \frac { 2 } { x _ { \mathrm { n } } } + \frac { 2 } { 3 } \right)$$
to calculate the values of \(x _ { 1 } , x _ { 2 }\) and \(x _ { 3 }\), giving your answers to 4 decimal places.
- By choosing a suitable interval, show that \(\alpha = 1.435\) is correct to 3 decimal places.
\end{table}
Turn over
advancing learning, changing lives
- (a) Find the value of \(\frac { \mathrm { d } y } { \mathrm {~d} x }\) at the point where \(x = 2\) on the curve with equation
$$y = x ^ { 2 } \sqrt { } ( 5 x - 1 )$$ - Differentiate \(\frac { \sin 2 x } { x ^ { 2 } }\) with respect to \(x\).
2.
$$f ( x ) = \frac { 2 x + 2 } { x ^ { 2 } - 2 x - 3 } - \frac { x + 1 } { x - 3 }$$ - Express \(\mathrm { f } ( x )\) as a single fraction in its simplest form.
- Hence show that \(\mathrm { f } ^ { \prime } ( x ) = \frac { 2 } { ( x - 3 ) ^ { 2 } }\)
3.
\begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{9527d80b-a2a2-442f-9e32-d8768fbbd01a-095_767_913_246_511}
\captionsetup{labelformat=empty}
\caption{Figure 1}
\end{figure}
Figure 1 shows the graph of \(y = \mathrm { f } ( x ) , \quad 1 < x < 9\).
The points \(T ( 3,5 )\) and \(S ( 7,2 )\) are turning points on the graph.
Sketch, on separate diagrams, the graphs of - \(y = 2 \mathrm { f } ( x ) - 4\),
- \(y = | \mathrm { f } ( x ) |\).
Indicate on each diagram the coordinates of any turning points on your sketch.
4. Find the equation of the tangent to the curve \(x = \cos ( 2 y + \pi )\) at \(\left( 0 , \frac { \pi } { 4 } \right)\).
Give your answer in the form \(y = a x + b\), where \(a\) and \(b\) are constants to be found.
5. The functions \(f\) and \(g\) are defined by
$$\begin{aligned}
& \mathrm { f } : x \mapsto 3 x + \ln x , \quad x > 0 , \quad x \in \mathbb { R }
& \mathrm {~g} : x \mapsto \mathrm { e } ^ { x ^ { 2 } } , \quad x \in \mathbb { R }
\end{aligned}$$ - Write down the range of g.
- Show that the composite function fg is defined by
$$\mathrm { fg } : x \mapsto x ^ { 2 } + 3 \mathrm { e } ^ { x ^ { 2 } } , \quad x \in \mathbb { R } .$$
- Write down the range of fg.
- Solve the equation \(\frac { \mathrm { d } } { \mathrm { d } x } [ \mathrm { fg } ( x ) ] = x \left( x \mathrm { e } ^ { x ^ { 2 } } + 2 \right)\).
6. (a) (i) By writing \(3 \theta = ( 2 \theta + \theta )\), show that
$$\sin 3 \theta = 3 \sin \theta - 4 \sin ^ { 3 } \theta$$
(ii) Hence, or otherwise, for \(0 < \theta < \frac { \pi } { 3 }\), solve
$$8 \sin ^ { 3 } \theta - 6 \sin \theta + 1 = 0 .$$
Give your answers in terms of \(\pi\). - Using \(\sin ( \theta - \alpha ) = \sin \theta \cos \alpha - \cos \theta \sin \alpha\), or otherwise, show that
$$\sin 15 ^ { \circ } = \frac { 1 } { 4 } ( \sqrt { } 6 - \sqrt { } 2 )$$
7.
$$f ( x ) = 3 x e ^ { x } - 1$$
The curve with equation \(y = \mathrm { f } ( x )\) has a turning point \(P\).
- Find the exact coordinates of \(P\).
The equation \(\mathrm { f } ( x ) = 0\) has a root between \(x = 0.25\) and \(x = 0.3\)
- Use the iterative formula
$$x _ { n + 1 } = \frac { 1 } { 3 } \mathrm { e } ^ { - x _ { n } }$$
with \(x _ { 0 } = 0.25\) to find, to 4 decimal places, the values of \(x _ { 1 } , x _ { 2 }\) and \(x _ { 3 }\).
- By choosing a suitable interval, show that a root of \(\mathrm { f } ( x ) = 0\) is \(x = 0.2576\) correct to 4 decimal places.
8. (a) Express \(3 \cos \theta + 4 \sin \theta\) in the form \(R \cos ( \theta - \alpha )\), where \(R\) and \(\alpha\) are constants, \(R > 0\) and \(0 < \alpha < 90 ^ { \circ }\). - Hence find the maximum value of \(3 \cos \theta + 4 \sin \theta\) and the smallest positive value of \(\theta\) for which this maximum occurs.
The temperature, \(\mathrm { f } ( t )\), of a warehouse is modelled using the equation
$$f ( t ) = 10 + 3 \cos ( 15 t ) ^ { \circ } + 4 \sin ( 15 t ) ^ { \circ }$$
where \(t\) is the time in hours from midday and \(0 \leqslant t < 24\).
- Calculate the minimum temperature of the warehouse as given by this model.
- Find the value of \(t\) when this minimum temperature occurs.
\begin{table}[h]
\captionsetup{labelformat=empty}
\caption{physicsandmathstutor.com}
\end{table}
Paper Reference(s)
\section*{6665/01}
\section*{Edexcel GCE }
\begin{figure}[h]
\captionsetup{labelformat=empty}
\caption{Examiner's use only}
\includegraphics[alt={},max width=\textwidth]{9527d80b-a2a2-442f-9e32-d8768fbbd01a-105_99_311_495_1635}
\end{figure}
$$x _ { n + 1 } = \frac { 2 } { \left( x _ { n } \right) ^ { 2 } } + 2$$
is used. - Taking \(x _ { 0 } = 2.5\), find the values of \(x _ { 1 } , x _ { 2 } , x _ { 3 }\) and \(x _ { 4 }\).
Give your answers to 3 decimal places where appropriate.
- Show that \(\alpha = 2.359\) correct to 3 decimal places.
2. (a) Use the identity \(\cos ^ { 2 } \theta + \sin ^ { 2 } \theta = 1\) to prove that \(\tan ^ { 2 } \theta = \sec ^ { 2 } \theta - 1\). - Solve, for \(0 \leqslant \theta < 360 ^ { \circ }\), the equation
$$2 \tan ^ { 2 } \theta + 4 \sec \theta + \sec ^ { 2 } \theta = 2$$
- Rabbits were introduced onto an island. The number of rabbits, \(P , t\) years after they were introduced is modelled by the equation
$$P = 80 \mathrm { e } ^ { \frac { 1 } { 5 } t } , \quad t \in \mathbb { R } , t \geqslant 0$$ - Write down the number of rabbits that were introduced to the island.
- Find the number of years it would take for the number of rabbits to first exceed 1000.
- Find \(\frac { \mathrm { d } P } { \mathrm {~d} t }\).
- Find \(P\) when \(\frac { \mathrm { d } P } { \mathrm {~d} t } = 50\).
4. (i) Differentiate with respect to \(x\) - \(x ^ { 2 } \cos 3 x\)
- \(\frac { \ln \left( x ^ { 2 } + 1 \right) } { x ^ { 2 } + 1 }\)
(ii) A curve \(C\) has the equation
$$y = \sqrt { } ( 4 x + 1 ) , \quad x > - \frac { 1 } { 4 } , \quad y > 0$$
The point \(P\) on the curve has \(x\)-coordinate 2 . Find an equation of the tangent to \(C\) at \(P\) in the form \(a x + b y + c = 0\), where \(a , b\) and \(c\) are integers.
5.
\begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{9527d80b-a2a2-442f-9e32-d8768fbbd01a-111_721_1217_237_397}
\captionsetup{labelformat=empty}
\caption{Figure 2}
\end{figure}
Figure 2 shows a sketch of part of the curve with equation \(y = \mathrm { f } ( x ) , x \in \mathbb { R }\).
The curve meets the coordinate axes at the points \(A ( 0,1 - k )\) and \(B \left( \frac { 1 } { 2 } \ln k , 0 \right)\), where \(k\) is a constant and \(k > 1\), as shown in Figure 2.
On separate diagrams, sketch the curve with equation - \(y = | f ( x ) |\),
- \(y = \mathrm { f } ^ { - 1 } ( x )\).
Show on each sketch the coordinates, in terms of \(k\), of each point at which the curve meets or cuts the axes.
Given that \(\mathrm { f } ( x ) = \mathrm { e } ^ { 2 x } - k\),
- state the range of f ,
- find \(\mathrm { f } ^ { - 1 } ( x )\),
- write down the domain of \(\mathrm { f } ^ { - 1 }\).
- (a) Use the identity \(\cos ( A + B ) = \cos A \cos B - \sin A \sin B\), to show that
$$\cos 2 A = 1 - 2 \sin ^ { 2 } A$$
The curves \(C _ { 1 }\) and \(C _ { 2 }\) have equations
$$\begin{aligned}
& C _ { 1 } : \quad y = 3 \sin 2 x
& C _ { 2 } : \quad y = 4 \sin ^ { 2 } x - 2 \cos 2 x
\end{aligned}$$ - Show that the \(x\)-coordinates of the points where \(C _ { 1 }\) and \(C _ { 2 }\) intersect satisfy the equation
$$4 \cos 2 x + 3 \sin 2 x = 2$$
- Express \(4 \cos 2 x + 3 \sin 2 x\) in the form \(R \cos ( 2 x - \alpha )\), where \(R > 0\) and \(0 < \alpha < 90 ^ { \circ }\), giving the value of \(\alpha\) to 2 decimal places.
- Hence find, for \(0 \leqslant x < 180 ^ { \circ }\), all the solutions of
$$4 \cos 2 x + 3 \sin 2 x = 2$$
giving your answers to 1 decimal place.
7. The function f is defined by
$$\mathrm { f } ( x ) = 1 - \frac { 2 } { ( x + 4 ) } + \frac { x - 8 } { ( x - 2 ) ( x + 4 ) } , \quad x \in \mathbb { R } , x \neq - 4 , x \neq 2$$ - Show that \(\mathrm { f } ( x ) = \frac { x - 3 } { x - 2 }\)
The function g is defined by
$$\mathrm { g } ( x ) = \frac { \mathrm { e } ^ { x } - 3 } { \mathrm { e } ^ { x } - 2 } , \quad x \in \mathbb { R } , x \neq \ln 2$$
- Differentiate \(\mathrm { g } ( x )\) to show that \(\mathrm { g } ^ { \prime } ( x ) = \frac { \mathrm { e } ^ { x } } { \left( \mathrm { e } ^ { x } - 2 \right) ^ { 2 } }\)
- Find the exact values of \(x\) for which \(\mathrm { g } ^ { \prime } ( x ) = 1\)
8. (a) Write down \(\sin 2 x\) in terms of \(\sin x\) and \(\cos x\). - Find, for \(0 < x < \pi\), all the solutions of the equation
$$\operatorname { cosec } x - 8 \cos x = 0$$
giving your answers to 2 decimal places.
\end{table}
Turn over
advancing learning, changing lives
- Express
$$\frac { x + 1 } { 3 x ^ { 2 } - 3 } - \frac { 1 } { 3 x + 1 }$$
as a single fraction in its simplest form.
2.
$$f ( x ) = x ^ { 3 } + 2 x ^ { 2 } - 3 x - 11$$ - Show that \(\mathrm { f } ( x ) = 0\) can be rearranged as
$$x = \sqrt { } \left( \frac { 3 x + 11 } { x + 2 } \right) , \quad x \neq - 2 .$$
The equation \(\mathrm { f } ( x ) = 0\) has one positive root \(\alpha\).
The iterative formula \(x _ { n + 1 } = \sqrt { } \left( \frac { 3 x _ { n } + 11 } { x _ { n } + 2 } \right)\) is used to find an approximation to \(\alpha\).
- Taking \(x _ { 1 } = 0\), find, to 3 decimal places, the values of \(x _ { 2 } , x _ { 3 }\) and \(x _ { 4 }\).
- Show that \(\alpha = 2.057\) correct to 3 decimal places.
3. (a) Express \(5 \cos x - 3 \sin x\) in the form \(R \cos ( x + \alpha )\), where \(R > 0\) and \(0 < \alpha < \frac { 1 } { 2 } \pi\). - Hence, or otherwise, solve the equation
$$5 \cos x - 3 \sin x = 4$$
for \(0 \leqslant x < 2 \pi\), giving your answers to 2 decimal places.
4. (i) Given that \(y = \frac { \ln \left( x ^ { 2 } + 1 \right) } { x }\), find \(\frac { \mathrm { d } y } { \mathrm {~d} x }\).
(ii) Given that \(x = \tan y\), show that \(\frac { \mathrm { d } y } { \mathrm {~d} x } = \frac { 1 } { 1 + x ^ { 2 } }\).
5. Sketch the graph of \(y = \ln | x |\), stating the coordinates of any points of intersection with the axes.
6.
\begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{9527d80b-a2a2-442f-9e32-d8768fbbd01a-124_380_574_269_722}
\captionsetup{labelformat=empty}
\caption{Figure 1}
\end{figure}
Figure 1 shows a sketch of the graph of \(y = \mathrm { f } ( x )\).
The graph intersects the \(y\)-axis at the point \(( 0,1 )\) and the point \(A ( 2,3 )\) is the maximum turning point.
Sketch, on separate axes, the graphs of
(i) \(y = \mathrm { f } ( - x ) + 1\),
(ii) \(y = \mathrm { f } ( x + 2 ) + 3\),
(iii) \(y = 2 \mathrm { f } ( 2 x )\).
On each sketch, show the coordinates of the point at which your graph intersects the \(y\)-axis and the coordinates of the point to which \(A\) is transformed.
- (a) By writing \(\sec x\) as \(\frac { 1 } { \cos x }\), show that \(\frac { \mathrm { d } ( \sec x ) } { \mathrm { d } x } = \sec x \tan x\).
Given that \(y = \mathrm { e } ^ { 2 x } \sec 3 x\), - find \(\frac { \mathrm { d } y } { \mathrm {~d} x }\).
The curve with equation \(y = \mathrm { e } ^ { 2 x } \sec 3 x , - \frac { \pi } { 6 } < x < \frac { \pi } { 6 }\), has a minimum turning point at \(( a , b )\).
- Find the values of the constants \(a\) and \(b\), giving your answers to 3 significant figures.
8. Solve
$$\operatorname { cosec } ^ { 2 } 2 x - \cot 2 x = 1$$
for \(0 \leqslant x \leqslant 180 ^ { \circ }\).