Edexcel C3 — Question 7

Exam BoardEdexcel
ModuleC3 (Core Mathematics 3)
TopicExponential Functions

  1. A particular species of orchid is being studied. The population \(p\) at time \(t\) years after the study started is assumed to be
$$p = \frac { 2800 a \mathrm { e } ^ { 0.2 t } } { 1 + a \mathrm { e } ^ { 0.2 t } } , \text { where } a \text { is a constant. }$$ Given that there were 300 orchids when the study started,
  1. show that \(a = 0.12\),
  2. use the equation with \(a = 0.12\) to predict the number of years before the population of orchids reaches 1850.
  3. Show that \(p = \frac { 336 } { 0.12 + \mathrm { e } ^ { - 0.2 t } }\).
  4. Hence show that the population cannot exceed 2800.
    \end{table} Turn over
    1. \begin{figure}[h]
    \captionsetup{labelformat=empty} \caption{Figure 1} \includegraphics[alt={},max width=\textwidth]{9527d80b-a2a2-442f-9e32-d8768fbbd01a-014_689_766_276_594}
    \end{figure} Figure 1 shows the graph of \(y = \mathrm { f } ( x ) , - 5 \leqslant x \leqslant 5\).
    The point \(M ( 2,4 )\) is the maximum turning point of the graph.
    Sketch, on separate diagrams, the graphs of
  5. \(y = \mathrm { f } ( x ) + 3\),
  6. \(y = | \mathrm { f } ( x ) |\),
  7. \(y = \mathrm { f } ( | x | )\). Show on each graph the coordinates of any maximum turning points.
    1. Express
    $$\frac { 2 x ^ { 2 } + 3 x } { ( 2 x + 3 ) ( x - 2 ) } - \frac { 6 } { x ^ { 2 } - x - 2 }$$ as a single fraction in its simplest form.
    3. The point \(P\) lies on the curve with equation \(y = \ln \left( \frac { 1 } { 3 } x \right)\). The \(x\)-coordinate of \(P\) is 3 . Find an equation of the normal to the curve at the point \(P\) in the form \(y = a x + b\), where \(a\) and \(b\) are constants.
    (5)
    4. (a) Differentiate with respect to \(x\)
    (i) \(x ^ { 2 } \mathrm { e } ^ { 3 x + 2 }\),
    (ii) \(\frac { \cos \left( 2 x ^ { 3 } \right) } { 3 x }\).
  8. Given that \(x = 4 \sin ( 2 y + 6 )\), find \(\frac { \mathrm { d } y } { \mathrm {~d} x }\) in terms of \(x\).
    5. $$f ( x ) = 2 x ^ { 3 } - x - 4$$
  9. Show that the equation \(\mathrm { f } ( x ) = 0\) can be written as $$x = \sqrt { \left( \frac { 2 } { x } + \frac { 1 } { 2 } \right) }$$ The equation \(2 x ^ { 3 } - x - 4 = 0\) has a root between 1.35 and 1.4.
  10. Use the iteration formula $$x _ { n + 1 } = \sqrt { } \left( \frac { 2 } { x _ { n } } + \frac { 1 } { 2 } \right)$$ with \(x _ { 0 } = 1.35\), to find, to 2 decimal places, the values of \(x _ { 1 } , x _ { 2 }\) and \(x _ { 3 }\). The only real root of \(\mathrm { f } ( x ) = 0\) is \(\alpha\).
  11. By choosing a suitable interval, prove that \(\alpha = 1.392\), to 3 decimal places.
    6. $$f ( x ) = 12 \cos x - 4 \sin x$$ Given that \(\mathrm { f } ( x ) = R \cos ( x + \alpha )\), where \(R \geqslant 0\) and \(0 \leqslant \alpha \leqslant 90 ^ { \circ }\),
  12. find the value of \(R\) and the value of \(\alpha\).
  13. Hence solve the equation $$12 \cos x - 4 \sin x = 7$$ for \(0 \leqslant x < 360 ^ { \circ }\), giving your answers to one decimal place.
    1. Write down the minimum value of \(12 \cos x - 4 \sin x\).
    2. Find, to 2 decimal places, the smallest positive value of \(x\) for which this minimum value occurs.
      \includegraphics[max width=\textwidth, alt={}, center]{9527d80b-a2a2-442f-9e32-d8768fbbd01a-021_60_35_2669_1853}
      7. (a) Show that
    3. \(\frac { \cos 2 x } { \cos x + \sin x } \equiv \cos x - \sin x , \quad x \neq \left( n - \frac { 1 } { 4 } \right) \pi , n \in \mathbb { Z }\),
    4. \(\frac { 1 } { 2 } ( \cos 2 x - \sin 2 x ) \equiv \cos ^ { 2 } x - \cos x \sin x - \frac { 1 } { 2 }\).
  14. Hence, or otherwise, show that the equation $$\cos \theta \left( \frac { \cos 2 \theta } { \cos \theta + \sin \theta } \right) = \frac { 1 } { 2 }$$ can be written as $$\sin 2 \theta = \cos 2 \theta$$
  15. Solve, for \(0 \leqslant \theta < 2 \pi\), $$\sin 2 \theta = \cos 2 \theta$$ giving your answers in terms of \(\pi\).