- A particular species of orchid is being studied. The population \(p\) at time \(t\) years after the study started is assumed to be
$$p = \frac { 2800 a \mathrm { e } ^ { 0.2 t } } { 1 + a \mathrm { e } ^ { 0.2 t } } , \text { where } a \text { is a constant. }$$
Given that there were 300 orchids when the study started,
- show that \(a = 0.12\),
- use the equation with \(a = 0.12\) to predict the number of years before the population of orchids reaches 1850.
- Show that \(p = \frac { 336 } { 0.12 + \mathrm { e } ^ { - 0.2 t } }\).
- Hence show that the population cannot exceed 2800.
\end{table}
Turn over
1.
\begin{figure}[h]
\captionsetup{labelformat=empty}
\caption{Figure 1}
\includegraphics[alt={},max width=\textwidth]{9527d80b-a2a2-442f-9e32-d8768fbbd01a-014_689_766_276_594}
\end{figure}
Figure 1 shows the graph of \(y = \mathrm { f } ( x ) , - 5 \leqslant x \leqslant 5\).
The point \(M ( 2,4 )\) is the maximum turning point of the graph.
Sketch, on separate diagrams, the graphs of - \(y = \mathrm { f } ( x ) + 3\),
- \(y = | \mathrm { f } ( x ) |\),
- \(y = \mathrm { f } ( | x | )\).
Show on each graph the coordinates of any maximum turning points.
- Express
$$\frac { 2 x ^ { 2 } + 3 x } { ( 2 x + 3 ) ( x - 2 ) } - \frac { 6 } { x ^ { 2 } - x - 2 }$$
as a single fraction in its simplest form.
3. The point \(P\) lies on the curve with equation \(y = \ln \left( \frac { 1 } { 3 } x \right)\). The \(x\)-coordinate of \(P\) is 3 . Find an equation of the normal to the curve at the point \(P\) in the form \(y = a x + b\), where \(a\) and \(b\) are constants.
(5)
4. (a) Differentiate with respect to \(x\)
(i) \(x ^ { 2 } \mathrm { e } ^ { 3 x + 2 }\),
(ii) \(\frac { \cos \left( 2 x ^ { 3 } \right) } { 3 x }\). - Given that \(x = 4 \sin ( 2 y + 6 )\), find \(\frac { \mathrm { d } y } { \mathrm {~d} x }\) in terms of \(x\).
5.
$$f ( x ) = 2 x ^ { 3 } - x - 4$$ - Show that the equation \(\mathrm { f } ( x ) = 0\) can be written as
$$x = \sqrt { \left( \frac { 2 } { x } + \frac { 1 } { 2 } \right) }$$
The equation \(2 x ^ { 3 } - x - 4 = 0\) has a root between 1.35 and 1.4.
- Use the iteration formula
$$x _ { n + 1 } = \sqrt { } \left( \frac { 2 } { x _ { n } } + \frac { 1 } { 2 } \right)$$
with \(x _ { 0 } = 1.35\), to find, to 2 decimal places, the values of \(x _ { 1 } , x _ { 2 }\) and \(x _ { 3 }\).
The only real root of \(\mathrm { f } ( x ) = 0\) is \(\alpha\).
- By choosing a suitable interval, prove that \(\alpha = 1.392\), to 3 decimal places.
6.
$$f ( x ) = 12 \cos x - 4 \sin x$$
Given that \(\mathrm { f } ( x ) = R \cos ( x + \alpha )\), where \(R \geqslant 0\) and \(0 \leqslant \alpha \leqslant 90 ^ { \circ }\), - find the value of \(R\) and the value of \(\alpha\).
- Hence solve the equation
$$12 \cos x - 4 \sin x = 7$$
for \(0 \leqslant x < 360 ^ { \circ }\), giving your answers to one decimal place.
- Write down the minimum value of \(12 \cos x - 4 \sin x\).
- Find, to 2 decimal places, the smallest positive value of \(x\) for which this minimum value occurs.
\includegraphics[max width=\textwidth, alt={}, center]{9527d80b-a2a2-442f-9e32-d8768fbbd01a-021_60_35_2669_1853}
7. (a) Show that - \(\frac { \cos 2 x } { \cos x + \sin x } \equiv \cos x - \sin x , \quad x \neq \left( n - \frac { 1 } { 4 } \right) \pi , n \in \mathbb { Z }\),
- \(\frac { 1 } { 2 } ( \cos 2 x - \sin 2 x ) \equiv \cos ^ { 2 } x - \cos x \sin x - \frac { 1 } { 2 }\).
- Hence, or otherwise, show that the equation
$$\cos \theta \left( \frac { \cos 2 \theta } { \cos \theta + \sin \theta } \right) = \frac { 1 } { 2 }$$
can be written as
$$\sin 2 \theta = \cos 2 \theta$$
- Solve, for \(0 \leqslant \theta < 2 \pi\),
$$\sin 2 \theta = \cos 2 \theta$$
giving your answers in terms of \(\pi\).