CAIE P1 (Pure Mathematics 1) 2002 June

Question 1
View details
1 The line \(x + 2 y = 9\) intersects the curve \(x y + 18 = 0\) at the points \(A\) and \(B\). Find the coordinates of \(A\) and \(B\).
Question 2
View details
2
  1. Show that \(\sin x \tan x\) may be written as \(\frac { 1 - \cos ^ { 2 } x } { \cos x }\).
  2. Hence solve the equation \(2 \sin x \tan x = 3\), for \(0 ^ { \circ } \leqslant x \leqslant 360 ^ { \circ }\).
Question 3
View details
3
\includegraphics[max width=\textwidth, alt={}, center]{b2cefbd6-6e89-495a-9f42-60f76c8c5975-2_629_659_715_740} The diagram shows the curve \(y = 3 \sqrt { } x\) and the line \(y = x\) intersecting at \(O\) and \(P\). Find
  1. the coordinates of \(P\),
  2. the area of the shaded region.
Question 4
View details
4 A progression has a first term of 12 and a fifth term of 18.
  1. Find the sum of the first 25 terms if the progression is arithmetic.
  2. Find the 13th term if the progression is geometric.
Question 5
View details
5
\includegraphics[max width=\textwidth, alt={}, center]{b2cefbd6-6e89-495a-9f42-60f76c8c5975-3_1070_754_255_699} The diagram shows a solid cylinder standing on a horizontal circular base, centre \(O\) and radius 4 units. The line \(B A\) is a diameter and the radius \(O C\) is at \(90 ^ { \circ }\) to \(O A\). Points \(O ^ { \prime } , A ^ { \prime } , B ^ { \prime }\) and \(C ^ { \prime }\) lie on the upper surface of the cylinder such that \(O O ^ { \prime } , A A ^ { \prime } , B B ^ { \prime }\) and \(C C ^ { \prime }\) are all vertical and of length 12 units. The mid-point of \(B B ^ { \prime }\) is \(M\). Unit vectors \(\mathbf { i } , \mathbf { j }\) and \(\mathbf { k }\) are parallel to \(O A , O C\) and \(O O ^ { \prime }\) respectively.
  1. Express each of the vectors \(\overrightarrow { M O }\) and \(\overrightarrow { M C ^ { \prime } }\) in terms of \(\mathbf { i } , \mathbf { j }\) and \(\mathbf { k }\).
  2. Hence find the angle \(O M C ^ { \prime }\).
Question 6
View details
6 The function f , where \(\mathrm { f } ( x ) = a \sin x + b\), is defined for the domain \(0 \leqslant x \leqslant 2 \pi\). Given that \(\mathrm { f } \left( \frac { 1 } { 2 } \pi \right) = 2\) and that \(\mathrm { f } \left( \frac { 3 } { 2 } \pi \right) = - 8\),
  1. find the values of \(a\) and \(b\),
  2. find the values of \(x\) for which \(\mathrm { f } ( x ) = 0\), giving your answers in radians correct to 2 decimal places,
  3. sketch the graph of \(y = \mathrm { f } ( x )\).
Question 7
View details
7
\includegraphics[max width=\textwidth, alt={}, center]{b2cefbd6-6e89-495a-9f42-60f76c8c5975-4_556_524_255_813} The diagram shows the circular cross-section of a uniform cylindrical log with centre \(O\) and radius 20 cm . The points \(A , X\) and \(B\) lie on the circumference of the cross-section and \(A B = 32 \mathrm {~cm}\).
  1. Show that angle \(A O B = 1.855\) radians, correct to 3 decimal places.
  2. Find the area of the sector \(A X B O\). The section \(A X B C D\), where \(A B C D\) is a rectangle with \(A D = 18 \mathrm {~cm}\), is removed.
  3. Find the area of the new cross-section (shown shaded in the diagram).
Question 8
View details
8 A hollow circular cylinder, open at one end, is constructed of thin sheet metal. The total external surface area of the cylinder is \(192 \pi \mathrm {~cm} ^ { 2 }\). The cylinder has a radius of \(r \mathrm {~cm}\) and a height of \(h \mathrm {~cm}\).
  1. Express \(h\) in terms of \(r\) and show that the volume, \(V \mathrm {~cm} ^ { 3 }\), of the cylinder is given by $$V = \frac { 1 } { 2 } \pi \left( 192 r - r ^ { 3 } \right) .$$ Given that \(r\) can vary,
  2. find the value of \(r\) for which \(V\) has a stationary value,
  3. find this stationary value and determine whether it is a maximum or a minimum.
Question 9
View details
9 A curve is such that \(\frac { \mathrm { d } y } { \mathrm {~d} x } = \frac { 12 } { ( 2 x + 1 ) ^ { 2 } }\) and \(P ( 1,5 )\) is a point on the curve.
  1. The normal to the curve at \(P\) crosses the \(x\)-axis at \(Q\). Find the coordinates of \(Q\).
  2. Find the equation of the curve.
  3. A point is moving along the curve in such a way that the \(x\)-coordinate is increasing at a constant rate of 0.3 units per second. Find the rate of increase of the \(y\)-coordinate when \(x = 1\).
Question 10
View details
10 The functions \(f\) and \(g\) are defined by $$\begin{array} { l l } \mathrm { f } : x \mapsto 3 x + 2 , & x \in \mathbb { R } ,
\mathrm {~g} : x \mapsto \frac { 6 } { 2 x + 3 } , & x \in \mathbb { R } , x \neq - 1.5 . \end{array}$$
  1. Find the value of \(x\) for which \(\operatorname { fg } ( x ) = 3\).
  2. Sketch, in a single diagram, the graphs of \(y = \mathrm { f } ( x )\) and \(y = \mathrm { f } ^ { - 1 } ( x )\), making clear the relationship between the two graphs.
  3. Express each of \(\mathrm { f } ^ { - 1 } ( x )\) and \(\mathrm { g } ^ { - 1 } ( x )\) in terms of \(x\), and solve the equation \(\mathrm { f } ^ { - 1 } ( x ) = \mathrm { g } ^ { - 1 } ( x )\).