8 At time \(t\) seconds a particle \(P\) has position vector \(\mathbf { r }\) metres, with respect to a fixed origin \(O\), where
$$\mathbf { r } = \left( 4 t ^ { 2 } - k t + 5 \right) \mathbf { i } + \left( 4 t ^ { 3 } + 2 k t ^ { 2 } - 8 t \right) \mathbf { j } , \quad t \geqslant 0 .$$
When \(t = 2 , P\) is moving parallel to the vector \(\mathbf { i }\).
- Show that \(k = - 5\).
- Find the values of \(t\) when the magnitude of the acceleration of \(P\) is \(10 \mathrm {~ms} ^ { - 2 }\).