OCR Mechanics 1 (Mechanics 1) 2018 September

Question 1
View details
1
  1. Show that \(4 x ^ { 2 } - 12 x + 3 = 4 \left( x - \frac { 3 } { 2 } \right) ^ { 2 } - 6\).
  2. State the coordinates of the minimum point of the curve \(y = 4 x ^ { 2 } - 12 x + 3\).
Question 2
View details
2 A curve has equation \(y = a x ^ { 4 } + b x ^ { 3 } - 2 x + 3\).
  1. Given that the curve has a stationary point where \(x = 2\), show that \(16 a + 6 b = 1\).
  2. Given also that this stationary point is a point of inflection, determine the values of \(a\) and \(b\).
Question 3
View details
3
  1. Given that \(\sqrt { 2 \sin ^ { 2 } \theta + \cos \theta } = 2 \cos \theta\), show that \(6 \cos ^ { 2 } \theta - \cos \theta - 2 = 0\).
  2. In this question you must show detailed reasoning. Solve the equation $$6 \cos ^ { 2 } \theta - \cos \theta - 2 = 0$$ giving all values of \(\theta\) between \(0 ^ { \circ }\) and \(360 ^ { \circ }\) correct to 1 decimal place.
  3. Explain why not all the solutions from part (ii) are solutions of the equation $$\sqrt { 2 \sin ^ { 2 } \theta + \cos \theta } = 2 \cos \theta$$
Question 4
View details
4
\includegraphics[max width=\textwidth, alt={}, center]{28beb431-45d5-4300-88fe-00d05d78790b-05_787_892_267_568} The diagram shows the graph of \(y = \mathrm { f } ( x )\), where $$f ( x ) = \begin{cases} 4 - 4 x , & x \leqslant a ,
\ln ( b x - 8 ) - 2 , & x \geqslant a . \end{cases}$$ The range of f is \(\mathrm { f } ( x ) \geqslant - 2\).
  1. Show that \(a = \frac { 3 } { 2 }\).
  2. Find the value of \(b\).
  3. Find the exact value of \(\mathrm { ff } ( - 1 )\).
  4. Explain why the function f does not have an inverse.
Question 5
View details
5 The curve \(C\) has equation $$3 x ^ { 2 } - 5 x y + \mathrm { e } ^ { 2 y - 4 } + 6 = 0$$ The point \(P\) with coordinates \(( 1,2 )\) lies on \(C\). The tangent to \(C\) at \(P\) meets the \(y\)-axis at the point \(A\) and the normal to \(C\) at \(P\) meets the \(y\)-axis at the point \(B\). Find the exact area of triangle \(A B P\).
Question 6
View details
6
\includegraphics[max width=\textwidth, alt={}, center]{28beb431-45d5-4300-88fe-00d05d78790b-06_463_702_264_685} The diagram shows the curve \(C\) with parametric equations $$x = \frac { 1 } { 4 } \sin t , \quad y = t \cos t$$ where \(0 \leqslant t \leqslant k\).
  1. Find the value of \(k\).
  2. Find \(\frac { \mathrm { d } y } { \mathrm {~d} t }\) in terms of \(t\). The maximum point on \(C\) is denoted by \(P\).
  3. Using your answer to part (ii) and the standard small angle approximations, find an approximation for the \(x\)-coordinate of \(P\).
  4. (a) Show that the area of the finite region bounded by \(C\) and the \(x\)-axis is given by $$b \int _ { 0 } ^ { a } t ( 1 + \cos 2 t ) \mathrm { d } t$$ where \(a\) and \(b\) are constants to be determined.
    (b) In this question you must show detailed reasoning. Hence find the exact area of the finite region bounded by \(C\) and the \(x\)-axis.
Question 7
View details
7
\includegraphics[max width=\textwidth, alt={}, center]{28beb431-45d5-4300-88fe-00d05d78790b-07_512_1072_484_502} The diagram shows the velocity-time graph for a train travelling on a straight level track between stations \(A\) and \(B\) that are 2 km apart. The train leaves \(A\), accelerating uniformly from rest for 400 m until reaching a speed of \(32 \mathrm {~ms} ^ { - 1 }\). The train then travels at this steady speed for \(T\) seconds before decelerating uniformly at \(1.6 \mathrm {~m} \mathrm {~s} ^ { - 2 }\), coming to rest at \(B\). Find the total time for the journey.
Question 8
View details
8 At time \(t\) seconds a particle \(P\) has position vector \(\mathbf { r }\) metres, with respect to a fixed origin \(O\), where $$\mathbf { r } = \left( 4 t ^ { 2 } - k t + 5 \right) \mathbf { i } + \left( 4 t ^ { 3 } + 2 k t ^ { 2 } - 8 t \right) \mathbf { j } , \quad t \geqslant 0 .$$ When \(t = 2 , P\) is moving parallel to the vector \(\mathbf { i }\).
  1. Show that \(k = - 5\).
  2. Find the values of \(t\) when the magnitude of the acceleration of \(P\) is \(10 \mathrm {~ms} ^ { - 2 }\).
Question 9
View details
9
\includegraphics[max width=\textwidth, alt={}, center]{28beb431-45d5-4300-88fe-00d05d78790b-08_302_992_260_539} The diagram shows a plank of wood \(A B\), of mass 10 kg and length 6 m , resting with its end \(A\) on rough horizontal ground and its end \(B\) in contact with a fixed cylindrical oil drum. The plank is in a vertical plane perpendicular to the axis of the drum, and the line \(A B\) is a tangent to the circular cross-section of the drum, with the point of contact at \(B\). The plank is inclined at an angle \(\theta\) to the horizontal, where \(\tan \theta = \frac { 5 } { 12 }\). The plank is modelled as a uniform rod and the oil drum is modelled as being smooth.
  1. Find, in terms of \(g\), the normal contact force between the drum and the plank.
  2. Given that the plank is in limiting equilibrium, find the coefficient of friction between the plank and the ground.
Question 10
View details
10 A small ball \(P\) is projected with speed \(5 \mathrm {~ms} ^ { - 1 }\) at an angle \(\theta\) above the horizontal from a point \(O\) and moves freely under gravity. The horizontal and vertically upwards displacements of the ball from \(O\) at any subsequent time \(t\) seconds are \(x \mathrm {~m}\) and \(y \mathrm {~m}\) respectively. The ball is modelled as a particle and the acceleration due to gravity is taken to be \(10 \mathrm {~ms} ^ { - 2 }\).
  1. Show that the equation of the trajectory of \(P\) is $$y = x \tan \theta - \frac { x ^ { 2 } } { 5 } \left( 1 + \tan ^ { 2 } \theta \right)$$ It is given that \(\tan \theta = 3\).
  2. Using part (i), find the maximum height above the level of \(O\) of \(P\) in the subsequent motion.
  3. Find the values of \(t\) when \(P\) is moving at an angle \(\alpha\) to the horizontal, where \(\tan \alpha = \frac { 1 } { 3 }\).
  4. Give two possible reasons why the values of \(t\) found in part (iii) may not be accurate.
    \includegraphics[max width=\textwidth, alt={}, center]{28beb431-45d5-4300-88fe-00d05d78790b-09_435_714_267_678} Two particles \(P\) and \(Q\), with masses 2 kg and 8 kg respectively, are attached to the ends of a light inextensible string. The string passes over a small smooth pulley which is fixed at a point on the intersection of two fixed inclined planes. The string lies in a vertical plane that contains a line of greatest slope of each of the two inclined planes. Plane \(\Pi _ { 1 }\) is inclined at an angle of \(30 ^ { \circ }\) to the horizontal and plane \(\Pi _ { 2 }\) is inclined at an angle of \(\theta\) to the horizontal. Particle \(P\) is on \(\Pi _ { 1 }\) and \(Q\) is on \(\Pi _ { 2 }\) with the string taut (see diagram).
    \(\Pi _ { 1 }\) is rough and the coefficient of friction between \(P\) and \(\Pi _ { 1 }\) is \(\frac { \sqrt { 3 } } { 3 }\).
    \(\Pi _ { 2 }\) is smooth.
    The particles are released from rest and \(P\) begins to move towards the pulley with an acceleration of \(g \cos \theta \mathrm {~m} \mathrm {~s} ^ { - 2 }\).
  5. Show that \(\theta\) satisfies the equation $$4 \sin \theta - 5 \cos \theta = 1 .$$
  6. By expressing \(4 \sin \theta - 5 \cos \theta\) in the form \(R \sin ( \theta - \alpha )\), where \(R > 0\) and \(0 < \alpha < 90 ^ { \circ }\), find, correct to 3 significant figures, the tension in the string.