OCR Pure 1 2018 September — Question 10

Exam BoardOCR
ModulePure 1 (Pure Mathematics 1)
Year2018
SessionSeptember
TopicFixed Point Iteration

10
\includegraphics[max width=\textwidth, alt={}, center]{e3942549-bfc0-432a-bf49-7d01d44af01a-7_579_764_255_651} The diagram shows the graph of \(\mathrm { f } ( x ) = \ln ( 3 x + 1 ) - x\), which has a stationary point at \(x = \alpha\). A student wishes to find the non-zero root \(\beta\) of the equation \(\ln ( 3 x + 1 ) - x = 0\) using the Newton-Raphson method.
  1. (a) Determine the value of \(\alpha\).
    (b) Explain why the Newton-Raphson method will fail if \(\alpha\) is used as the initial value.
  2. Show that the Newton-Raphson iterative formula for finding \(\beta\) can be written as $$x _ { n + 1 } = \frac { 3 x _ { n } - \left( 3 x _ { n } + 1 \right) \ln \left( 3 x _ { n } + 1 \right) } { 2 - 3 x _ { n } } .$$
  3. Apply the iterative formula in part (ii) with initial value \(x _ { 1 } = 1\) to find the value of \(\beta\) correct to 5 significant figures. You should show the result of each iteration.
  4. Use a change of sign method to verify that the value of \(\beta\) found in part (iii) is correct to 5 significant figures.