OCR Further Statistics 2018 September — Question 1

Exam BoardOCR
ModuleFurther Statistics (Further Statistics)
Year2018
SessionSeptember
TopicBivariate data
TypeUse regression line for prediction

1 An experiment involves releasing a coin on a sloping plane so that it slides down the slope and then slides along a horizontal plane at the bottom of the slope before coming to rest. The angle \(\theta ^ { \circ }\) of the sloping plane is varied, and for each value of \(\theta\), the distance \(d \mathrm {~cm}\) the coin slides on the horizontal plane is recorded. A scatter diagram to illustrate the results of the experiment is shown below, together with the least squares regression line of \(d\) on \(\theta\).
\includegraphics[max width=\textwidth, alt={}, center]{28c6a0d9-09a6-4743-af0e-fe2e43e256c9-2_639_972_561_548}
  1. State which two of the following correctly describe the variable \(\theta\).
    Controlled variableCorrelation coefficient
    Dependent variableIndependent variable
    Response variableRegression coefficient
    The least squares regression line of \(d\) on \(\theta\) has equation \(d = 1.96 + 0.11 \theta\).
  2. Use the diagram in the Printed Answer Booklet to explain the term "least squares".
  3. State what difference, if any, it would make to the equation of the regression line if \(d\) were measured in inches rather than centimetres. ( 1 inch \(\approx 2.54 \mathrm {~cm}\) ).