5 The points \(A\) and \(B\) have position vectors \(\mathbf { a }\) and \(\mathbf { b }\) respectively, relative to a fixed origin \(O\).
- (a) Prove that \(\mathbf { a } \times ( \mathbf { b } - \mathbf { a } ) = \mathbf { a } \times \mathbf { b }\).
(b) Determine the relationship between \(\mathbf { a } \times ( \mathbf { b } - \mathbf { a } )\) and \(\mathbf { b } \times ( \mathbf { b } - \mathbf { a } )\). - The point \(D\) is on the line \(A B\). \(O D\) is perpendicular to \(A B\). By considering the area of triangle \(O A B\), show
that \(| O D | = \frac { | \mathbf { a } \times \mathbf { b } | } { | \mathbf { b } - \mathbf { a } | }\).