OCR Further Additional Pure AS 2018 March — Question 4

Exam BoardOCR
ModuleFurther Additional Pure AS (Further Additional Pure AS)
Year2018
SessionMarch
TopicGroups

4 The group \(G\) consists of the symmetries of the equilateral triangle \(A B C\) under the operation of composition of transformations (which may be assumed to be associative). Three elements of \(G\) are
  • \(\boldsymbol { i }\), the identity
  • \(\boldsymbol { j }\), the reflection in the vertical line of symmetry of the triangle
  • \(\boldsymbol { k }\), the anticlockwise rotation of \(120 ^ { \circ }\) about the centre of the triangle.
These are shown in the diagram below.
\includegraphics[max width=\textwidth, alt={}, center]{0b4458dc-4f82-40e4-adcf-cbffca088389-3_204_531_735_772}
\includegraphics[max width=\textwidth, alt={}, center]{0b4458dc-4f82-40e4-adcf-cbffca088389-3_211_543_975_762}
\includegraphics[max width=\textwidth, alt={}, center]{0b4458dc-4f82-40e4-adcf-cbffca088389-3_216_543_1215_762}
  1. Explain why the order of \(G\) is 6 .
  2. Determine
    • the order of \(\boldsymbol { j }\),
    • the order of \(\boldsymbol { k }\).
    • - Express, in terms of \(\boldsymbol { j }\) and/or \(\boldsymbol { k }\), each of the remaining three elements of \(G\).
    • Draw a diagram for each of these elements.
    • Is the operation of composition of transformations on \(G\) commutative? Justify your answer.
    • List all the proper subgroups of \(G\).