9 The values of a set of bivariate data \(\left( x _ { i } , y _ { i } \right)\) can be summarised by
$$n = 50 , \sum x = 1270 , \sum y = 5173 , \sum x ^ { 2 } = 42767 , \sum y ^ { 2 } = 701301 , \sum x y = 173161 .$$
Ten independent observations of \(Y\) are obtained, all corresponding to \(x = 20\). It may be assumed that the variance of \(Y\) is 1.9 , independently of the value of \(x\). Find a \(95 \%\) confidence interval for the mean \(\bar { Y }\) of the 10 observations of \(Y\).
\section*{END OF QUESTION PAPER}