SPS SPS FM Pure 2025 September — Question 9 6 marks

Exam BoardSPS
ModuleSPS FM Pure (SPS FM Pure)
Year2025
SessionSeptember
Marks6
TopicSign Change & Interval Methods
TypeSign Change with Function Evaluation

9. A curve \(C\) has equation \(y = \mathrm { f } ( x )\) where $$\mathrm { f } ( x ) = x + 2 \ln ( \mathrm { e } - x )$$
    1. Show that the equation of the normal to \(C\) at the point where \(C\) crosses the \(y\)-axis is given by $$y = \left( \frac { \mathrm { e } } { 2 - \mathrm { e } } \right) x + 2$$
    2. Find the exact area enclosed by the normal and the coordinate axes. Fully justify your answer.
  1. The equation \(\mathrm { f } ( x ) = 0\) has one positive root, \(\alpha\).
    1. Show that \(\alpha\) lies between 2 and 3 Fully justify your answer.
    2. Show that the roots of \(\mathrm { f } ( x ) = 0\) satisfy the equation $$x = \mathrm { e } - \mathrm { e } ^ { - \frac { x } { 2 } }$$ [2 marks]
    3. Use the recurrence relation $$x _ { n + 1 } = \mathrm { e } - \mathrm { e } ^ { - \frac { x _ { n } } { 2 } }$$ with \(x _ { 1 } = 2\) to find the values of \(x _ { 2 }\) and \(x _ { 3 }\) giving your answers to three decimal places.
      [0pt] [2 marks]
    4. Figure 1 below shows a sketch of the graphs of \(y = e - e ^ { - \frac { x } { 2 } }\) and \(y = x\), and the position of \(x _ { 1 }\) On Figure 1, draw a cobweb or staircase diagram to show how convergence takes place, indicating the positions of \(x _ { 2 }\) and \(x _ { 3 }\) on the \(x\)-axis.
      [0pt] [2 marks] \begin{figure}[h]
      \captionsetup{labelformat=empty} \caption{Figure 1} \includegraphics[alt={},max width=\textwidth]{75e73922-4324-441c-b942-c709a71d9025-22_1236_1566_1519_360}
      \end{figure} [BLANK PAGE]
      [0pt] [BLANK PAGE]
      [0pt] [BLANK PAGE]
      [0pt] [BLANK PAGE]
      [0pt] [BLANK PAGE]