SPS SPS SM Pure 2025 February — Question 14

Exam BoardSPS
ModuleSPS SM Pure (SPS SM Pure)
Year2025
SessionFebruary
TopicIntegration by Parts

14.
  1. \(\quad y = \mathrm { e } ^ { - x } ( \sin x + \cos x )\) Find \(\frac { d y } { d x }\) and simplify your answer.
  2. Hence, show that $$\int e ^ { - x } \sin x d x = a e ^ { - x } ( \sin x + \cos x ) + c$$ where \(a\) is a rational number.
  3. A sketch of the graph of \(y = \mathrm { e } ^ { - x } \sin x\) for \(x \geq 0\) is shown below. The areas of the finite regions bounded by the curve and the \(x\)-axis are denoted by \(A _ { 1 }\), \(A _ { 2 } , \ldots , A _ { n } , \ldots\)
    \includegraphics[max width=\textwidth, alt={}, center]{bc7fb499-9462-40ae-88f4-87fc60f6a005-34_807_1246_959_406}
    1. Find the exact value of the area \(A _ { 1 }\)
    2. Show that $$\frac { A _ { 2 } } { A _ { 1 } } = e ^ { - \pi }$$
    3. Given that $$\frac { A _ { n + 1 } } { A _ { n } } = e ^ { - \pi }$$ show that the exact value of the total area enclosed between the curve and the \(x\)-axis is $$\frac { 1 + e ^ { \pi } } { 2 \left( e ^ { \pi } - 1 \right) }$$