| Exam Board | SPS |
| Module | SPS SM Pure (SPS SM Pure) |
| Year | 2025 |
| Session | February |
| Topic | Integration by Substitution |
13. Use the substitution \(u = \sqrt { x ^ { 3 } + 1 }\) to show that
$$\int \frac { 9 x ^ { 5 } } { \sqrt { x ^ { 3 } + 1 } } \mathrm {~d} x = 2 \left( x ^ { 3 } + 1 \right) ^ { k } \left( x ^ { 3 } - A \right) + C$$
where \(k\) and \(A\) are constants to be found and \(c\) is an arbitrary constant.
(Total for Question 13 is 4 marks)