2 A particle \(P\) of mass 0.4 kg is on a rough horizontal floor. The coefficient of friction between \(P\) and the floor is \(\mu\). A force of magnitude 3 N is applied to \(P\) upwards at an angle \(\alpha\) above the horizontal, where \(\tan \alpha = \frac { 3 } { 4 }\). The particle is initially at rest and accelerates at \(2 \mathrm {~m} \mathrm {~s} ^ { - 2 }\).
- Find the time it takes for \(P\) to travel a distance of 1.44 m from its starting point.
- Find \(\mu\).