4 A lorry of mass 15000 kg moves on a straight horizontal road in the direction from \(A\) to \(B\). It passes \(A\) and \(B\) with speeds \(20 \mathrm {~m} \mathrm {~s} ^ { - 1 }\) and \(25 \mathrm {~m} \mathrm {~s} ^ { - 1 }\) respectively. The power of the lorry's engine is constant and there is a constant resistance to motion of magnitude 6000 N . The acceleration of the lorry at \(B\) is 0.5 times the acceleration of the lorry at \(A\).
- Show that the power of the lorry's engine is 200 kW , and hence find the acceleration of the lorry when it is travelling at \(20 \mathrm {~m} \mathrm {~s} ^ { - 1 }\).
The lorry begins to ascend a straight hill inclined at \(1 ^ { \circ }\) to the horizontal. It is given that the power of the lorry's engine and the resistance force do not change. - Find the steady speed up the hill that the lorry could maintain.