12. In this question you must show detailed reasoning.
- By using an appropriate Maclaurin series prove that if \(x > 0\) then \(\mathrm { e } ^ { x } > 1 + x\).
- Hence, by using a suitable substitution, deduce that \(\mathrm { e } ^ { t } > \mathrm { e } t\) for \(t > 1\).
- Using the inequality in part (b), and by making a suitable choice for \(t\), determine which is greater, \(\mathrm { e } ^ { \pi }\) or \(\pi ^ { \mathrm { e } }\).
[0pt]
[BLANK PAGE]
[0pt]
[BLANK PAGE]
[0pt]
[BLANK PAGE]
[0pt]
[BLANK PAGE]
[0pt]
[BLANK PAGE]