SPS SPS FM Pure 2022 February — Question 12

Exam BoardSPS
ModuleSPS FM Pure (SPS FM Pure)
Year2022
SessionFebruary
TopicTaylor series
TypeUse series to approximate numerical value

12. In this question you must show detailed reasoning.
  1. By using an appropriate Maclaurin series prove that if \(x > 0\) then \(\mathrm { e } ^ { x } > 1 + x\).
  2. Hence, by using a suitable substitution, deduce that \(\mathrm { e } ^ { t } > \mathrm { e } t\) for \(t > 1\).
  3. Using the inequality in part (b), and by making a suitable choice for \(t\), determine which is greater, \(\mathrm { e } ^ { \pi }\) or \(\pi ^ { \mathrm { e } }\).
    [0pt] [BLANK PAGE]
    [0pt] [BLANK PAGE]
    [0pt] [BLANK PAGE]
    [0pt] [BLANK PAGE]
    [0pt] [BLANK PAGE]