SPS SPS FM Pure 2022 February — Question 4

Exam BoardSPS
ModuleSPS FM Pure (SPS FM Pure)
Year2022
SessionFebruary
Topic3x3 Matrices

    1. \(\mathbf { A }\) is a 2 by 2 matrix and \(\mathbf { B }\) is a 2 by 3 matrix.
Giving a reason for your answer, explain whether it is possible to evaluate
  1. \(\mathbf { A B }\)
  2. \(\mathbf { A } + \mathbf { B }\)
    (ii) Given that $$\left( \begin{array} { r r r } - 5 & 3 & 1
    a & 0 & 0
    b & a & b \end{array} \right) \left( \begin{array} { r r r } 0 & 5 & 0
    2 & 12 & - 1
    - 1 & - 11 & 3 \end{array} \right) = \lambda \mathbf { I }$$ where \(a , b\) and \(\lambda\) are constants,
  3. determine
    • the value of \(\lambda\)
    • the value of \(a\)
    • the value of \(b\)
    • Hence deduce the inverse of the matrix \(\left( \begin{array} { r r r } - 5 & 3 & 1
      a & 0 & 0
      b & a & b \end{array} \right)\)
      (iii) Given that
    $$\mathbf { M } = \left( \begin{array} { c c c } 1 & 1 & 1
    0 & \sin \theta & \cos \theta
    0 & \cos 2 \theta & \sin 2 \theta \end{array} \right) \quad \text { where } 0 \leqslant \theta < \pi$$ determine the values of \(\theta\) for which the matrix \(\mathbf { M }\) is singular.
    [0pt] [BLANK PAGE]
    [0pt] [BLANK PAGE]
    [0pt] [BLANK PAGE]
    [0pt] [TURN OVER FOR QUESTION 5]