SPS SPS SM Pure (SPS SM Pure) 2021 September

Question 1 5 marks
View details
1.
  1. Find \(\int \left( \frac { 36 } { x ^ { 2 } } + a x \right) \mathrm { d } x\), where \(a\) is a constant.
    [0pt] [3 marks]
  2. Hence, given that \(\int _ { 1 } ^ { 3 } \left( \frac { 36 } { x ^ { 2 } } + a x \right) \mathrm { d } x = 16\), find the value of the constant \(a\).
    [0pt] [2 marks]
Question 2
View details
2. (a) (i) Using the binomial expansion, or otherwise, express \(( 2 + y ) ^ { 3 }\) in the form \(a + b y + c y ^ { 2 } + y ^ { 3 }\), where \(a , b\) and \(c\) are integers.
(ii) Hence show that \(\left( 2 + x ^ { - 2 } \right) ^ { 3 } + \left( 2 - x ^ { - 2 } \right) ^ { 3 }\) can be expressed in the form \(p + q x ^ { - 4 }\), where \(p\) and \(q\) are integers.
(b) (i) Hence find \(\int \left[ \left( 2 + x ^ { - 2 } \right) ^ { 3 } + \left( 2 - x ^ { - 2 } \right) ^ { 3 } \right] \mathrm { d } x\).
Question 3
View details
3. A circle with centre \(C ( 5 , - 3 )\) passes through the point \(A ( - 2,1 )\).
  1. Find the equation of the circle in the form $$( x - a ) ^ { 2 } + ( y - b ) ^ { 2 } = k$$
  2. Given that \(A B\) is a diameter of the circle, find the coordinates of the point \(B\).
  3. Find an equation of the tangent to the circle at the point \(A\), giving your answer in the form \(p x + q y + r = 0\), where \(p , q\) and \(r\) are integers.
Question 4
View details
4.
  1. \begin{figure}[h]
    \includegraphics[alt={},max width=\textwidth]{cee51b6b-40d2-4abb-acf7-47c73a919bf9-10_656_776_210_721} \captionsetup{labelformat=empty} \caption{Fig. 12}
    \end{figure} Fig. 12 shows part of the curve \(y = x ^ { 4 }\) and the line \(y = 8 x\), which intersect at the origin and the point P .
    (A) Find the coordinates of P , and show that the area of triangle OPQ is 16 square units.
    (B) Find the area of the region bounded by the line and the curve.
  2. If \(f ( x ) = x ^ { 3 }\), find \(f ^ { \prime } ( x )\) from first principles.
Question 5
View details
5. A curve has the equation $$y = \frac { 12 + x ^ { 2 } \sqrt { x } } { x } , \quad x > 0$$
  1. Express \(\frac { 12 + x ^ { 2 } \sqrt { x } } { x }\) in the form \(12 x ^ { p } + x ^ { q }\).
    1. Hence find \(\frac { \mathrm { d } y } { \mathrm {~d} x }\).
    2. Find an equation of the normal to the curve at the point on the curve where \(x = 4\).
    3. The curve has a stationary point \(P\). Show that the \(x\)-coordinate of \(P\) can be written in the form \(2 ^ { k }\), where \(k\) is a rational number.
Question 6 8 marks
View details
6. The diagram shows a triangle \(A B C\).
\includegraphics[max width=\textwidth, alt={}, center]{cee51b6b-40d2-4abb-acf7-47c73a919bf9-14_499_718_219_703} The lengths of \(A B , B C\) and \(A C\) are \(8 \mathrm {~cm} , 5 \mathrm {~cm}\) and 9 cm respectively.
Angle \(B A C\) is \(\theta\) radians.
  1. Show that \(\theta = 0.586\), correct to three significant figures.
    [0pt] [2 marks]
  2. Find the area of triangle \(A B C\), giving your answer, in \(\mathrm { cm } ^ { 2 }\), to three significant figures.
    [0pt] [2 marks]
  3. A circular sector, centre \(A\) and radius \(r \mathrm {~cm}\), is removed from triangle \(A B C\). The remaining shape is shown shaded in the diagram below.
    \includegraphics[max width=\textwidth, alt={}, center]{cee51b6b-40d2-4abb-acf7-47c73a919bf9-14_488_700_1409_685} Given that the area of the sector removed is equal to the area of the shaded shape, find the perimeter of the shaded shape. Give your answer in cm to three significant figures.
    [0pt] [4 marks]
Question 7
View details
7. The \(n\)th term of a sequence is \(u _ { n }\). The sequence is defined by $$u _ { n + 1 } = p u _ { n } + q$$ where \(p\) and \(q\) are constants.
The first two terms of the sequence are given by \(u _ { 1 } = 96\) and \(u _ { 2 } = 72\).
The limit of \(u _ { n }\) as \(n\) tends to infinity is 24 .
  1. Show that \(p = \frac { 2 } { 3 }\).
  2. Find the value of \(u _ { 3 }\).
Question 8
View details
8. (i) Given that \(6 \tan \theta \sin \theta = 5\), show that \(6 \cos ^ { 2 } \theta + 5 \cos \theta - 6 = 0\).
(3 marks)
(ii) Hence solve the equation \(6 \tan 3 x \sin 3 x = 5\), giving all values of \(x\) to the nearest degree in the interval \(0 ^ { \circ } \leqslant x \leqslant 180 ^ { \circ }\).
(2 marks)
Question 9 4 marks
View details
9. The gradient, \(\frac { \mathrm { d } y } { \mathrm {~d} x }\), at the point \(( x , y )\) on a curve is given by $$\frac { \mathrm { d } y } { \mathrm {~d} x } = 54 + 27 x - 6 x ^ { 2 }$$
    1. Find \(\frac { \mathrm { d } ^ { 2 } y } { \mathrm {~d} x ^ { 2 } }\).
      [0pt] [2 marks]
    2. The curve passes through the point \(P \left( - 1 \frac { 1 } { 2 } , 4 \right)\). Verify that the curve has a minimum point at \(P\).
      [0pt] [2 marks]
    1. Show that at the points on the curve where \(y\) is decreasing $$2 x ^ { 2 } - 9 x - 18 > 0$$
    2. Solve the inequality \(2 x ^ { 2 } - 9 x - 18 > 0\).
Question 10
View details
10. By first showing that \(\frac { 16 + 9 \sin ^ { 2 } \theta } { 5 - 3 \cos \theta }\) can be expressed in the form \(p + q \cos \theta\), where \(p\) and \(q\) are integers, find the least possible value of \(\frac { 16 + 9 \sin ^ { 2 } \theta } { 5 - 3 \cos \theta }\). State the exact value of \(\theta\), in radians in the interval \(0 \leqslant \theta < 2 \pi\), at which this least value occurs.
Question 11
View details
11.
  1. Given that \(\log _ { 3 } c = m\) and \(\log _ { 27 } d = n\), express \(\frac { \sqrt { c } } { d ^ { 2 } }\) in the form \(3 ^ { y }\), where \(y\) is an expression in terms of \(m\) and \(n\).
  2. Show that the equation $$\log _ { 4 } ( 2 x + 3 ) + \log _ { 4 } ( 2 x + 15 ) = 1 + \log _ { 4 } ( 14 x + 5 )$$ has only one solution and state its value.