SPS SPS FM Mechanics 2021 January — Question 3

Exam BoardSPS
ModuleSPS FM Mechanics (SPS FM Mechanics)
Year2021
SessionJanuary
TopicMomentum and Collisions 1

3. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{bab18666-3571-4906-ab2f-b85e87c6e8f4-4_289_846_358_678} \captionsetup{labelformat=empty} \caption{Figure 1}
\end{figure} Figure 1 represents the plan of part of a smooth horizontal floor, where \(W _ { 1 }\) and \(W _ { 2 }\) are two fixed parallel vertical walls. The walls are 3 metres apart. A particle lies at rest at a point \(O\) on the floor between the two walls, where the point \(O\) is \(d\) metres, \(0 < d \leqslant 3\), from \(W _ { 1 }\) At time \(t = 0\), the particle is projected from \(O\) towards \(W _ { 1 }\) with speed \(u \mathrm {~m} \mathrm {~s} ^ { - 1 }\) in a direction perpendicular to the walls. The coefficient of restitution between the particle and each wall is \(\frac { 2 } { 3 }\)
The particle returns to \(O\) at time \(t = T\) seconds, having bounced off each wall once.
  1. Show that \(T = \frac { 45 - 5 d } { 4 u }\) The value of \(u\) is fixed, the particle still hits each wall once but the value of \(d\) can now vary.
  2. Find the least possible value of \(T\), giving your answer in terms of \(u\). You must give a reason for your answer. \section*{4.} A car of mass 600 kg pulls a trailer of mass 150 kg along a straight horizontal road. The trailer is connected to the car by a light inextensible towbar, which is parallel to the direction of motion of the car. The resistance to the motion of the trailer is modelled as a constant force of magnitude 200 N . At the instant when the speed of the car is \(v \mathrm {~ms} ^ { - 1 }\), the resistance to the motion of the car is modelled as a force of magnitude \(( 200 + \lambda v ) \mathrm { N }\), where \(\lambda\) is a constant. When the engine of the car is working at a constant rate of 15 kW , the car is moving at a constant speed of \(25 \mathrm {~m} \mathrm {~s} ^ { - 1 }\)
  3. Show that \(\lambda = 8\) Later on, the car is pulling the trailer up a straight road inclined at an angle \(\theta\) to the horizontal, where \(\sin \theta = \frac { 1 } { 15 }\)
    The resistance to the motion of the trailer from non-gravitational forces is modelled as a constant force of magnitude 200 N at all times. At the instant when the speed of the car is \(v \mathrm {~m} \mathrm {~s} ^ { - 1 }\), the resistance to the motion of the car from non-gravitational forces is modelled as a force of magnitude \(( 200 + 8 v ) \mathrm { N }\). The engine of the car is again working at a constant rate of 15 kW .
    When \(v = 10\), the towbar breaks. The trailer comes to instantaneous rest after moving a distance \(d\) metres up the road from the point where the towbar broke.
  4. Find the acceleration of the car immediately after the towbar breaks.
  5. Use the work-energy principle to find the value of \(d\).