SPS SPS ASFM 2020 May — Question 7

Exam BoardSPS
ModuleSPS ASFM (SPS ASFM)
Year2020
SessionMay
TopicCircular Motion 2

7.
\includegraphics[max width=\textwidth, alt={}]{4718e448-71e5-452a-a905-608331f743a5-5_520_410_429_228}
A smooth wire is shaped into a circle of radius 2.5 m which is fixed in a vertical plane with its centre at a point \(O\). A small bead \(B\) is threaded onto the wire. \(B\) is held with \(O B\) vertical and is then projected horizontally with an initial speed of \(8.4 \mathrm {~ms} ^ { - 1 }\) (see diagram).
  1. Find the speed of \(B\) at the instant when \(O B\) makes an angle of 0.8 radians with the downward vertical through \(O\).
  2. Determine whether \(B\) has sufficient energy to reach the point on the wire vertically above \(O\).
    \includegraphics[max width=\textwidth, alt={}, center]{4718e448-71e5-452a-a905-608331f743a5-6_675_412_296_221} As shown in the diagram, \(A B\) is a long thin rod which is fixed vertically with \(A\) above \(B\). One end of a light inextensible string of length 1 m is attached to \(A\) and the other end is attached to a particle \(P\) of mass \(m _ { 1 } \mathrm {~kg}\). One end of another light inextensible string of length 1 m is also attached to \(P\). Its other end is attached to a small smooth ring \(R\), of mass \(m _ { 2 } \mathrm {~kg}\), which is free to move on \(A B\). Initially, \(P\) moves in a horizontal circle of radius 0.6 m with constant angular velocity \(\omega \mathrm { rad } \mathrm { s } ^ { - 1 }\). The magnitude of the tension in string \(A P\) is denoted by \(T _ { 1 } \mathrm {~N}\) while that in string \(P R\) is denoted by \(T _ { 2 } \mathrm {~N}\).
  3. By considering forces on \(R\), express \(T _ { 2 }\) in terms of \(m _ { 2 }\).
  4. Show that
    1. \(T _ { 1 } = \frac { 49 } { 4 } \left( m _ { 1 } + m _ { 2 } \right)\),
    2. \(\omega ^ { 2 } = \frac { 49 \left( m _ { 1 } + 2 m _ { 2 } \right) } { 4 m _ { 1 } }\).
  5. Deduce that, in the case where \(m _ { 1 }\) is much bigger than \(m _ { 2 } , \omega \approx 3.5\). In a different case, where \(m _ { 1 } = 2.5\) and \(m _ { 2 } = 2.8 , P\) slows down. Eventually the system comes to rest with \(P\) and \(R\) hanging in equilibrium.
  6. Find the total energy lost by \(P\) and \(R\) as the angular velocity of \(P\) changes from the initial value of \(\omega \mathrm { rads } ^ { - 1 }\) to zero. Three particles, \(P , Q\) and \(R\), are at rest on a smooth horizontal plane. The particles lie along a straight line with \(Q\) between \(P\) and \(R\). The particles \(Q\) and \(R\) have masses \(m\) and \(k m\) respectively, where \(k\) is a constant. Particle \(Q\) is projected towards \(R\) with speed \(u\) and the particles collide directly.
    The coefficient of restitution between each pair of particles is \(e\).
  7. Find, in terms of \(e\), the range of values of \(k\) for which there is a second collision. Given that the mass of \(P\) is \(k m\) and that there is a second collision,
  8. write down, in terms of \(u , k\) and \(e\), the speed of \(Q\) after this second collision.