12.
[0pt]
[In this question \(\mathbf { i }\) and \(\mathbf { j }\) are perpendicular unit vectors in a horizontal plane.]
A smooth uniform sphere \(A\) has mass 0.2 kg and another smooth uniform sphere \(B\), with the same radius as \(A\), has mass 0.4 kg .
The spheres are moving on a smooth horizontal surface when they collide obliquely. Immediately before the collision, the velocity of \(A\) is \(( 3 \mathbf { i } + 2 \mathbf { j } ) \mathrm { m } \mathrm { s } ^ { - 1 }\) and the velocity of \(B\) is \(( - 4 \mathbf { i } - \mathbf { j } ) \mathrm { m } \mathrm { s } ^ { - 1 }\)
At the instant of collision, the line joining the centres of the spheres is parallel to \(\mathbf { i }\) The coefficient of restitution between the spheres is \(\frac { 3 } { 7 }\)
- Find the velocity of \(A\) immediately after the collision.
- Find the magnitude of the impulse received by \(A\) in the collision.
- Find, to the nearest degree, the size of the angle through which the direction of motion of \(A\) is deflected as a result of the collision.