SPS SPS FM 2020 May — Question 4 7 marks

Exam BoardSPS
ModuleSPS FM (SPS FM)
Year2020
SessionMay
Marks7
TopicComplex numbers 2

4.
  1. If \(z = \cos \theta + \mathrm { i } \sin \theta\), use de Moivre's theorem to prove that $$z ^ { n } - \frac { 1 } { z ^ { n } } = 2 \mathrm { i } \sin n \theta$$ [3 marks]
  2. Express \(\sin ^ { 5 } \theta\) in terms of \(\sin 5 \theta , \sin 3 \theta\) and \(\sin \theta\)
    [0pt] [4 marks]
  3. Hence show that $$\int _ { 0 } ^ { \frac { \pi } { 3 } } \sin ^ { 5 } \theta \mathrm {~d} \theta = \frac { 53 } { 480 }$$