10.
\begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{f2033889-3cc5-48de-9bdb-cb1861921a2a-10_883_885_283_644}
\captionsetup{labelformat=empty}
\caption{Figure 3}
\end{figure}
Figure 3 shows a sketch of the curve \(C\) with equation \(y = 3 x - 2 \sqrt { x } , x \geqslant 0\) and the line \(l\) with equation \(y = 8 x - 16\)
The line cuts the curve at point \(A\) as shown in Figure 3.
- Using algebra, find the \(x\) coordinate of point \(A\).
(5) - \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{f2033889-3cc5-48de-9bdb-cb1861921a2a-10_656_814_1786_662}
\captionsetup{labelformat=empty}
\caption{Figure 4}
\end{figure}
The region \(R\) is shown unshaded in Figure 4. Identify the inequalities that define \(R\).