SPS SPS SM 2020 June — Question 4

Exam BoardSPS
ModuleSPS SM (SPS SM)
Year2020
SessionJune
TopicCurve Sketching
TypeSketch single transformation from given curve

4. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{f2033889-3cc5-48de-9bdb-cb1861921a2a-06_803_816_269_676} \captionsetup{labelformat=empty} \caption{Figure 1}
\end{figure} Figure 1 shows a sketch of the curve with equation \(y = \mathrm { g } ( x )\).
The curve has a single turning point, a minimum, at the point \(M ( 4 , - 1.5 )\).
The curve crosses the \(x\)-axis at two points, \(P ( 2,0 )\) and \(Q ( 7,0 )\).
The curve crosses the \(y\)-axis at a single point \(R ( 0,5 )\).
  1. State the coordinates of the turning point on the curve with equation \(y = 2 \mathrm {~g} ( x )\).
  2. State the largest root of the equation $$\mathrm { g } ( x + 1 ) = 0$$
  3. State the range of values of \(x\) for which \(\mathrm { g } ^ { \prime } ( x ) \leqslant 0\) Given that the equation \(\mathrm { g } ( x ) + k = 0\), where \(k\) is a constant, has no real roots,
  4. state the range of possible values for \(k\). Use the binomial expansion to find, in ascending powers of \(x\), the first four terms in the expansion of $$\left( 1 + \frac { 3 } { 4 } x \right) ^ { 6 }$$ simplifying each term.