CAIE M1 2020 June — Question 6

Exam BoardCAIE
ModuleM1 (Mechanics 1)
Year2020
SessionJune
TopicPulley systems

6 A particle travels in a straight line \(P Q\). The velocity of the particle \(t \mathrm {~s}\) after leaving \(P\) is \(v \mathrm {~m} \mathrm {~s} ^ { - 1 }\), where $$v = 4.5 + 4 t - 0.5 t ^ { 2 }$$
  1. Find the velocity of the particle at the instant when its acceleration is zero.
    The particle comes to instantaneous rest at \(Q\).
  2. Find the distance \(P Q\).
    \includegraphics[max width=\textwidth, alt={}, center]{55090630-1413-45cd-8201-4d58662db6bd-10_625_780_260_744} Two particles \(A\) and \(B\), of masses \(3 m \mathrm {~kg}\) and \(2 m \mathrm {~kg}\) respectively, are attached to the ends of a light inextensible string. The string passes over a fixed smooth pulley which is attached to the edge of a plane. The plane is inclined at an angle \(\theta\) to the horizontal. \(A\) lies on the plane and \(B\) hangs vertically, 0.8 m above the floor, which is horizontal. The string between \(A\) and the pulley is parallel to a line of greatest slope of the plane (see diagram). Initially \(A\) and \(B\) are at rest.
  3. Given that the plane is smooth, find the value of \(\theta\) for which \(A\) remains at rest.
    It is given instead that the plane is rough, \(\theta = 30 ^ { \circ }\) and the acceleration of \(A\) up the plane is \(0.1 \mathrm {~m} \mathrm {~s} ^ { - 2 }\).
  4. Show that the coefficient of friction between \(A\) and the plane is \(\frac { 1 } { 10 } \sqrt { 3 }\).
  5. When \(B\) reaches the floor it comes to rest. Find the length of time after \(B\) reaches the floor for which \(A\) is moving up the plane. [You may assume that \(A\) does not reach the pulley.]
    If you use the following lined page to complete the answer(s) to any question(s), the question number(s) must be clearly shown.