CAIE M1 (Mechanics 1) 2020 June

Question 1
View details
1 Particles \(P\) of mass \(m \mathrm {~kg}\) and \(Q\) of mass 0.2 kg are free to move on a smooth horizontal plane. \(P\) is projected at a speed of \(2 \mathrm {~m} \mathrm {~s} ^ { - 1 }\) towards \(Q\) which is stationary. After the collision \(P\) and \(Q\) move in opposite directions with speeds of \(0.5 \mathrm {~m} \mathrm {~s} ^ { - 1 }\) and \(1 \mathrm {~m} \mathrm {~s} ^ { - 1 }\) respectively. Find \(m\).
Question 2
View details
2 A minibus of mass 4000 kg is travelling along a straight horizontal road. The resistance to motion is 900 N .
  1. Find the driving force when the acceleration of the minibus is \(0.5 \mathrm {~m} \mathrm {~s} ^ { - 2 }\).
  2. Find the power required for the minibus to maintain a constant speed of \(25 \mathrm {~m} \mathrm {~s} ^ { - 1 }\).
Question 3
View details
3
\includegraphics[max width=\textwidth, alt={}, center]{55090630-1413-45cd-8201-4d58662db6bd-04_586_1003_260_571} Four coplanar forces of magnitudes \(40 \mathrm {~N} , 20 \mathrm {~N} , 50 \mathrm {~N}\) and \(F \mathrm {~N}\) act at a point in the directions shown in the diagram. The four forces are in equilibrium. Find \(F\) and \(\alpha\).
Question 4
View details
4 A car starts from rest and moves in a straight line with constant acceleration \(a \mathrm {~m} \mathrm {~s} ^ { - 2 }\) for a distance of 50 m . The car then travels with constant velocity for 500 m for a period of 25 s , before decelerating to rest. The magnitude of this deceleration is \(2 a \mathrm {~m} \mathrm {~s} ^ { - 2 }\).
  1. Sketch the velocity-time graph for the motion of the car.
    \includegraphics[max width=\textwidth, alt={}, center]{55090630-1413-45cd-8201-4d58662db6bd-05_533_1155_534_534}
  2. Find the value of \(a\).
  3. Find the total time for which the car is in motion.
Question 5
View details
5 A block \(B\) of mass 4 kg is pushed up a line of greatest slope of a smooth plane inclined at \(30 ^ { \circ }\) to the horizontal by a force applied to \(B\), acting in the direction of motion of \(B\). The block passes through points \(P\) and \(Q\) with speeds \(12 \mathrm {~m} \mathrm {~s} ^ { - 1 }\) and \(8 \mathrm {~m} \mathrm {~s} ^ { - 1 }\) respectively. \(P\) and \(Q\) are 10 m apart with \(P\) below the level of \(Q\).
  1. Find the decrease in kinetic energy of the block as it moves from \(P\) to \(Q\).
  2. Hence find the work done by the force pushing the block up the slope as the block moves from \(P\) to \(Q\).
  3. At the instant the block reaches \(Q\), the force pushing the block up the slope is removed. Find the time taken, after this instant, for the block to return to \(P\).
Question 6
View details
6 A particle travels in a straight line \(P Q\). The velocity of the particle \(t \mathrm {~s}\) after leaving \(P\) is \(v \mathrm {~m} \mathrm {~s} ^ { - 1 }\), where $$v = 4.5 + 4 t - 0.5 t ^ { 2 }$$
  1. Find the velocity of the particle at the instant when its acceleration is zero.
    The particle comes to instantaneous rest at \(Q\).
  2. Find the distance \(P Q\).
    \includegraphics[max width=\textwidth, alt={}, center]{55090630-1413-45cd-8201-4d58662db6bd-10_625_780_260_744} Two particles \(A\) and \(B\), of masses \(3 m \mathrm {~kg}\) and \(2 m \mathrm {~kg}\) respectively, are attached to the ends of a light inextensible string. The string passes over a fixed smooth pulley which is attached to the edge of a plane. The plane is inclined at an angle \(\theta\) to the horizontal. \(A\) lies on the plane and \(B\) hangs vertically, 0.8 m above the floor, which is horizontal. The string between \(A\) and the pulley is parallel to a line of greatest slope of the plane (see diagram). Initially \(A\) and \(B\) are at rest.
  3. Given that the plane is smooth, find the value of \(\theta\) for which \(A\) remains at rest.
    It is given instead that the plane is rough, \(\theta = 30 ^ { \circ }\) and the acceleration of \(A\) up the plane is \(0.1 \mathrm {~m} \mathrm {~s} ^ { - 2 }\).
  4. Show that the coefficient of friction between \(A\) and the plane is \(\frac { 1 } { 10 } \sqrt { 3 }\).
  5. When \(B\) reaches the floor it comes to rest. Find the length of time after \(B\) reaches the floor for which \(A\) is moving up the plane. [You may assume that \(A\) does not reach the pulley.]
    If you use the following lined page to complete the answer(s) to any question(s), the question number(s) must be clearly shown.