1 Answer this question on the insert provided.
The table shows a partially completed dynamic programming tabulation for solving a maximin problem.
| Stage | State | Action | Working | Maximin |
| \multirow{4}{*}{1} | 0 | 0 | 10 | |
| 1 | 0 | 11 | |
| 2 | 0 | 14 | |
| 3 | 0 | 15 | |
| \multirow{10}{*}{2} | \multirow{2}{*}{0} | 0 | (12, ) = | \multirow{2}{*}{} |
| | 2 | \(( 10 , \quad ) =\) | |
| \multirow{3}{*}{1} | 0 | \(( 13 , \quad ) =\) | \multirow{3}{*}{} |
| | 1 | \(( 10 , \quad ) =\) | |
| | 2 | (11, ) = | |
| \multirow{3}{*}{2} | 1 | ( 9, ) = | \multirow{3}{*}{} |
| | 2 | (10, ) = | |
| | 3 | ( 7, ) = | |
| \multirow{2}{*}{3} | 1 | ( 8, ) = | \multirow{2}{*}{} |
| | 3 | (12, ) = | |
| \multirow{4}{*}{3} | \multirow{4}{*}{0} | 0 | \(( 15 , \quad ) =\) | \multirow{4}{*}{} |
| | 1 | \(( 14 , \quad ) =\) | |
| | 2 | (16, ) = | |
| | 3 | (13, ) = | |
- Complete the last two columns of the table in the insert.
- State the maximin value and write down the maximin route.