OCR D2 2009 January — Question 1

Exam BoardOCR
ModuleD2 (Decision Mathematics 2)
Year2009
SessionJanuary
TopicDynamic Programming

1 Answer this question on the insert provided. The table shows a partially completed dynamic programming tabulation for solving a maximin problem.
StageStateActionWorkingMaximin
\multirow{4}{*}{1}0010
1011
2014
3015
\multirow{10}{*}{2}\multirow{2}{*}{0}0(12, ) =\multirow{2}{*}{}
2\(( 10 , \quad ) =\)
\multirow{3}{*}{1}0\(( 13 , \quad ) =\)\multirow{3}{*}{}
1\(( 10 , \quad ) =\)
2(11, ) =
\multirow{3}{*}{2}1( 9, ) =\multirow{3}{*}{}
2(10, ) =
3( 7, ) =
\multirow{2}{*}{3}1( 8, ) =\multirow{2}{*}{}
3(12, ) =
\multirow{4}{*}{3}\multirow{4}{*}{0}0\(( 15 , \quad ) =\)\multirow{4}{*}{}
1\(( 14 , \quad ) =\)
2(16, ) =
3(13, ) =
  1. Complete the last two columns of the table in the insert.
  2. State the maximin value and write down the maximin route.