OCR D2 2006 January — Question 5

Exam BoardOCR
ModuleD2 (Decision Mathematics 2)
Year2006
SessionJanuary
TopicCritical Path Analysis

5 Answer this question on the insert provided. The diagram shows an activity network for a project. The table lists the durations of the activities (in days).
\includegraphics[max width=\textwidth, alt={}, center]{9c9b1a42-8d16-446a-85a1-4c08e5e368be-4_652_867_429_393}
ActivityDuration
\(A\)5
\(B\)3
\(C\)4
\(D\)2
\(E\)1
\(F\)3
\(G\)5
\(H\)2
\(I\)4
\(J\)3
  1. Explain why each of the dummy activities is needed.
  2. Complete the blank column of the table in the insert to show the immediate predecessors for each activity.
  3. Carry out a forward pass to find the early start times for the events. Record these at the eight vertices on the copy of the network on the insert. Also calculate the late start times for the events and record these at the vertices. Find the minimum completion time for the project and list the critical activities.
  4. By how much would the duration of activity \(C\) need to increase for \(C\) to become a critical activity? Assume that each activity requires one worker and that each worker is able to do any of the activities. The activities may not be split. The duration of \(C\) is 4 days.
  5. Draw a resource histogram, assuming that each activity starts at its earliest possible time. How many workers are needed with this schedule?
  6. Describe how, by delaying the start of activity \(E\) (and other activities, to be determined), the project can be completed in the minimum time by just three workers.