OCR H240/03 2019 June — Question 5

Exam BoardOCR
ModuleH240/03 (Pure Mathematics and Mechanics)
Year2019
SessionJune
TopicReciprocal Trig & Identities

  1. Prove that \(( \cot \theta + \operatorname { cosec } \theta ) ^ { 2 } = \frac { 1 + \cos \theta } { 1 - \cos \theta }\).
  2. Hence solve, for \(0 < \theta < 2 \pi , 3 ( \cot \theta + \operatorname { cosec } \theta ) ^ { 2 } = 2 \sec \theta\).
    \includegraphics[max width=\textwidth, alt={}]{7d1b7598-8f97-43a0-8366-efa8192d549e-06_574_695_306_258}
    The diagram shows part of the curve \(y = \frac { 2 x - 1 } { ( 2 x + 3 ) ( x + 1 ) ^ { 2 } }\).
    Find the exact area of the shaded region, giving your answer in the form \(p + q \ln r\), where \(p\) and \(q\) are positive integers and \(r\) is a positive rational number.