OCR H240/03 2019 June — Question 10

Exam BoardOCR
ModuleH240/03 (Pure Mathematics and Mechanics)
Year2019
SessionJune
TopicNewton's laws and connected particles

10 In this question the unit vectors \(\mathbf { i }\) and \(\mathbf { j }\) are in the directions east and north respectively.
A particle \(R\) of mass 2 kg is moving on a smooth horizontal surface under the action of a single horizontal force \(\mathbf { F }\) N. At time \(t\) seconds, the velocity \(\mathbf { v } \mathrm { ms } ^ { - 1 }\) of \(R\), relative to a fixed origin \(O\), is given by \(\mathbf { v } = \left( p t ^ { 2 } - 3 t \right) \mathbf { i } + ( 8 t + q ) \mathbf { j }\), where \(p\) and \(q\) are constants and \(p < 0\).
  1. Given that when \(t = 0.5\) the magnitude of \(\mathbf { F }\) is 20 , find the value of \(p\). When \(t = 0 , R\) is at the point with position vector \(( 2 \mathbf { i } - 3 \mathbf { j } ) \mathrm { m }\).
  2. Find, in terms of \(q\), an expression for the displacement vector of \(R\) at time \(t\). When \(t = 1 , R\) is at a point on the line \(L\), where \(L\) passes through \(O\) and the point with position vector \(2 \mathbf { i } - 8 \mathbf { j }\).
  3. Find the value of \(q\).
    \includegraphics[max width=\textwidth, alt={}, center]{7d1b7598-8f97-43a0-8366-efa8192d549e-09_544_1297_251_255} The diagram shows a ladder \(A B\), of length \(2 a\) and mass \(m\), resting in equilibrium on a vertical wall of height \(h\). The ladder is inclined at an angle of \(30 ^ { \circ }\) to the horizontal. The end \(A\) is in contact with horizontal ground. An object of mass \(2 m\) is placed on the ladder at a point \(C\) where \(A C = d\). The ladder is modelled as uniform, the ground is modelled as being rough, and the vertical wall is modelled as being smooth.
  4. Show that the normal contact force between the ladder and the wall is \(\frac { m g ( a + 2 d ) \sqrt { 3 } } { 4 h }\). It is given that the equilibrium is limiting and the coefficient of friction between the ladder and the ground is \(\frac { 1 } { 8 } \sqrt { 3 }\).
  5. Show that \(h = k ( a + 2 d )\), where \(k\) is a constant to be determined.
  6. Hence find, in terms of \(a\), the greatest possible value of \(d\).
  7. State one improvement that could be made to the model.