OCR FP3 2016 June — Question 3

Exam BoardOCR
ModuleFP3 (Further Pure Mathematics 3)
Year2016
SessionJune
TopicFirst order differential equations (integrating factor)

3 The differential equation $$\frac { 2 } { y } - \frac { x } { y ^ { 2 } } \frac { \mathrm {~d} y } { \mathrm {~d} x } = \frac { 1 } { x ^ { 2 } }$$ is to be solved subject to the condition \(y = 1\) when \(x = 1\).
  1. Show that \(y = \frac { 1 } { u }\) transforms the differential equation into $$x \frac { \mathrm {~d} u } { \mathrm {~d} x } + 2 u = \frac { 1 } { x ^ { 2 } } .$$
  2. Find \(y\) in terms of \(x\).