OCR FP1 2016 June — Question 8

Exam BoardOCR
ModuleFP1 (Further Pure Mathematics 1)
Year2016
SessionJune
TopicSequences and series, recurrence and convergence

  1. Show that \(\frac { 1 } { 2 r + 1 } - \frac { 1 } { 2 r + 3 } \equiv \frac { 2 } { ( 2 r + 1 ) ( 2 r + 3 ) }\).
  2. Hence find \(\sum _ { r = 1 } ^ { n } \frac { 1 } { ( 2 r + 1 ) ( 2 r + 3 ) }\), giving your answer as a single fraction.
  3. Find \(\sum _ { r = n } ^ { \infty } \frac { 1 } { ( 2 r + 1 ) ( 2 r + 3 ) }\), giving your answer as a single fraction.