OCR FP1 2016 June — Question 9

Exam BoardOCR
ModuleFP1 (Further Pure Mathematics 1)
Year2016
SessionJune
Topic3x3 Matrices

9
  1. The matrix \(\mathbf { X }\) is given by \(\mathbf { X } = \left( \begin{array} { r r r } a & 3 & - 2
    0 & a & 5
    1 & 2 & 1 \end{array} \right)\). Show that the determinant of \(\mathbf { X }\) is \(a ^ { 2 } - 8 a + 15\).
  2. Explain briefly why the equations $$\begin{array} { r } 3 x + 3 y - 2 z = 1
    3 y + 5 z = 5
    x + 2 y + z = 2 \end{array}$$ do not have a unique solution and determine whether these equations are consistent or inconsistent.
  3. Use an algebraic method to find the square roots of the complex number \(9 + 40 \mathrm { i }\).
  4. Show that \(9 + 40 \mathrm { i }\) is a root of the quadratic equation \(z ^ { 2 } - 18 z + 1681 = 0\).
  5. By using the substitution \(z = \frac { 1 } { u ^ { 2 } }\), find the roots of the equation \(1681 u ^ { 4 } - 18 u ^ { 2 } + 1 = 0\). Give your answers in the form \(x + \mathrm { i } y\), where \(x\) and \(y\) are real.