Use calculus to find \(\int _ { 1 } ^ { 3 } \left( x ^ { 3 } - 3 x ^ { 2 } - x + 3 \right) \mathrm { d } x\) and state what this represents.
Find the \(x\)-coordinates of the turning points of the curve \(y = x ^ { 3 } - 3 x ^ { 2 } - x + 3\), giving your answers in surd form. Hence state the set of values of \(x\) for which \(y = x ^ { 3 } - 3 x ^ { 2 } - x + 3\) is a decreasing function.