A-Level Maths
Courses
Papers
Questions
Search
Courses
LFM Pure
Reciprocal Trig & Identities
Q5
CAIE P3 2024 November — Question 5
Exam Board
CAIE
Module
P3 (Pure Mathematics 3)
Year
2024
Session
November
Topic
Reciprocal Trig & Identities
5
Show that \(\cos ^ { 4 } \theta - \sin ^ { 4 } \theta - 4 \sin ^ { 2 } \theta \cos ^ { 2 } \theta \equiv \cos ^ { 2 } 2 \theta + \cos 2 \theta - 1\).
Solve the equation \(\cos ^ { 4 } \alpha - \sin ^ { 4 } \alpha = 4 \sin ^ { 2 } \alpha \cos ^ { 2 } \alpha\) for \(0 ^ { \circ } \leqslant \alpha \leqslant 180 ^ { \circ }\).
This paper
(11 questions)
View full paper
Q1
Q2
Q3
Q4
Q5
Q6
Q7
Q8
4
Q9
Q10
Q11