Edexcel FD2 2024 June — Question 7

Exam BoardEdexcel
ModuleFD2 (Further Decision 2)
Year2024
SessionJune
TopicDynamic Programming

7.
\multirow{2}{*}{}Player B
Option XOption YOption Z
\multirow{3}{*}{Player A}Option R32-3
Option S4-21
Option T-136
A two person zero-sum game is represented by the pay-off matrix for player A, shown above.
  1. Verify that there is no stable solution to this game. Player A intends to make a random choice between options \(\mathrm { R } , \mathrm { S }\) and T , choosing option R with probability \(p _ { 1 }\), option S with probability \(p _ { 2 }\) and option T with probability \(p _ { 3 }\) Player A wants to find the optimal values of \(p _ { 1 } , p _ { 2 }\) and \(p _ { 3 }\) using the Simplex algorithm.
    Player A formulates the following objective function for the corresponding linear programme. $$\text { Maximise } P = V \quad \text { where } V = \text { the value of the game } + 3$$
  2. Determine an initial Simplex tableau, making your variables and working clear. After several iterations of the Simplex algorithm, a possible final tableau is
    b.v.\(V\)\(p _ { 1 }\)\(p _ { 2 }\)\(p _ { 3 }\)r\(s\)\(t\)\(u\)Value
    \(p _ { 3 }\)0001\(\frac { 1 } { 10 }\)\(- \frac { 3 } { 80 }\)\(- \frac { 1 } { 16 }\)\(\frac { 33 } { 80 }\)\(\frac { 33 } { 80 }\)
    \(p _ { 2 }\)0010\(- \frac { 1 } { 10 }\)\(\frac { 13 } { 80 }\)\(- \frac { 1 } { 16 }\)\(\frac { 17 } { 80 }\)\(\frac { 17 } { 80 }\)
    V1000\(\frac { 1 } { 2 }\)\(\frac { 5 } { 16 }\)\(\frac { 3 } { 16 }\)\(\frac { 73 } { 16 }\)\(\frac { 73 } { 16 }\)
    \(p _ { 1 }\)01000\(- \frac { 1 } { 8 }\)\(\frac { 1 } { 8 }\)\(\frac { 3 } { 8 }\)\(\frac { 3 } { 8 }\)
    \(P\)0000\(\frac { 1 } { 2 }\)\(\frac { 5 } { 16 }\)\(\frac { 3 } { 16 }\)\(\frac { 73 } { 16 }\)\(\frac { 73 } { 16 }\)
    1. State the best strategy for player A.
    2. Calculate the value of the game for player B. Player B intends to make a random choice between options \(\mathrm { X } , \mathrm { Y }\) and Z .
  3. Determine the best strategy for player B, making your method and working clear.
    (3)