5. A sequence \(\left\{ u _ { n } \right\}\), where \(\mathrm { n } \geqslant 0\), satisfies the second order recurrence relation
$$u _ { n + 2 } = \frac { 1 } { 2 } \left( u _ { n + 1 } + u _ { n } \right) + 3 \text { where } u _ { 0 } = 15 \quad u _ { 1 } = 20$$
- By considering the sequence \(\left\{ v _ { n } \right\}\), where \(u _ { n } = v _ { n } + 2 n\) for \(\mathrm { n } \geqslant 0\), determine an expression for \(u _ { n }\) as a function of n .
- Describe the long-term behaviour of \(u _ { n }\)