Edexcel FD1 2024 June — Question 2

Exam BoardEdexcel
ModuleFD1 (Further Decision 1)
Year2024
SessionJune
TopicTravelling Salesman

2. The table below represents a network of shortest distances, in miles, to travel between nine castles, A, B, C, D, E, F, G, H and J.
ABCDEFGHJ
A-5059265040876359
B50-28617963456448
C5928-335735703645
D266133-2464713733
E50795724-40643031
F4063356440-477071
G874570716447-3467
H63643637307034-33
J5948453331716733-
  1. Use Prim's algorithm, starting at D , to find the minimum spanning tree for this network. You must clearly state the order in which you select the arcs of your tree.
  2. State the weight of the minimum spanning tree found in part (a).
  3. Draw the minimum spanning tree using the vertices given in Diagram 1 in the answer book. A historian needs to visit all of the castles, starting and finishing at the same castle, and wishes to minimise the total distance travelled.
  4. Use your answer to part (b) to calculate an initial upper bound for the length of the historian's route.
    1. Use the nearest neighbour algorithm, starting at D , to find an upper bound for the length of the historian's route.
    2. Write down the route which gives this upper bound. Using the nearest neighbour algorithm, starting at F , an upper bound of length 352 miles was found.
  5. State the best upper bound that can be obtained by using this information and your answers from parts (d) and (e). Give the reason for your answer.
  6. By deleting A and all of its arcs, find a lower bound for the length of the historian's route.
    (2) By deleting J and all of its arcs, a lower bound of length 274 miles was found.
  7. State the best lower bound that can be obtained by using this information and your answer to part (g). Give the reason for your answer.