Edexcel CP2 2022 June — Question 3

Exam BoardEdexcel
ModuleCP2 (Core Pure 2)
Year2022
SessionJune
TopicInvariant lines and eigenvalues and vectors

  1. \(\mathbf { M } = \left( \begin{array} { l l } 3 & a
    0 & 1 \end{array} \right) \quad\) where \(a\) is a constant
    1. Prove by mathematical induction that, for \(n \in \mathbb { N }\)
    $$\mathbf { M } ^ { n } = \left( \begin{array} { c c } 3 ^ { n } & \frac { a } { 2 } \left( 3 ^ { n } - 1 \right)
    0 & 1 \end{array} \right)$$ Triangle \(T\) has vertices \(A , B\) and \(C\).
    Triangle \(T\) is transformed to triangle \(T ^ { \prime }\) by the transformation represented by \(\mathbf { M } ^ { n }\) where \(n \in \mathbb { N }\) Given that
    • triangle \(T\) has an area of \(5 \mathrm {~cm} ^ { 2 }\)
    • triangle \(T ^ { \prime }\) has an area of \(1215 \mathrm {~cm} ^ { 2 }\)
    • vertex \(A ( 2 , - 2 )\) is transformed to vertex \(A ^ { \prime } ( 123 , - 2 )\)
    • determine
      1. the value of \(n\)
      2. the value of \(a\)