Edexcel CP2 2020 June — Question 6

Exam BoardEdexcel
ModuleCP2 (Core Pure 2)
Year2020
SessionJune
Topic3x3 Matrices

6. $$\mathbf { M } = \left( \begin{array} { r r r } k & 5 & 7
1 & 1 & 1
2 & 1 & - 1 \end{array} \right) \quad \text { where } k \text { is a constant }$$
  1. Given that \(k \neq 4\), find, in terms of \(k\), the inverse of the matrix \(\mathbf { M }\).
  2. Find, in terms of \(p\), the coordinates of the point where the following planes intersect. $$\begin{array} { r } 2 x + 5 y + 7 z = 1
    x + y + z = p
    2 x + y - z = 2 \end{array}$$
    1. Find the value of \(q\) for which the following planes intersect in a straight line. $$\begin{array} { r } 4 x + 5 y + 7 z = 1
      x + y + z = q
      2 x + y - z = 2 \end{array}$$
    2. For this value of \(q\), determine a vector equation for the line of intersection.