Edexcel CP1 2023 June — Question 7

Exam BoardEdexcel
ModuleCP1 (Core Pure 1)
Year2023
SessionJune
TopicSequences and series, recurrence and convergence

  1. In this question you must show all stages of your working. Solutions relying on calculator technology are not acceptable.
    1. Explain why, for \(n \in \mathbb { N }\)
    $$\sum _ { r = 1 } ^ { 2 n } ( - 1 ) ^ { r } \mathrm { f } ( r ) = \sum _ { r = 1 } ^ { n } ( \mathrm { f } ( 2 r ) - \mathrm { f } ( 2 r - 1 ) )$$ for any function \(\mathrm { f } ( r )\).
  2. Use the standard summation formulae to show that, for \(n \in \mathbb { N }\) $$\sum _ { r = 1 } ^ { 2 n } r \left( ( - 1 ) ^ { r } + 2 r \right) ^ { 2 } = n ( 2 n + 1 ) \left( 8 n ^ { 2 } + 4 n + 5 \right)$$
  3. Hence evaluate $$\sum _ { r = 14 } ^ { 50 } r \left( ( - 1 ) ^ { r } + 2 r \right) ^ { 2 }$$