- The line \(l _ { 1 }\) has equation \(\frac { x + 5 } { 1 } = \frac { y + 4 } { - 3 } = \frac { z - 3 } { 5 }\)
The plane \(\Pi _ { 1 }\) has equation \(2 x + 3 y - 2 z = 6\)
- Find the point of intersection of \(l _ { 1 }\) and \(\Pi _ { 1 }\)
The line \(l _ { 2 }\) is the reflection of the line \(l _ { 1 }\) in the plane \(\Pi _ { 1 }\)
- Show that a vector equation for the line \(l _ { 2 }\) is
$$\mathbf { r } = \left( \begin{array} { r }
- 7
2
- 7
\end{array} \right) + \mu \left( \begin{array} { c }
10