Edexcel FD2 AS 2020 June — Question 4

Exam BoardEdexcel
ModuleFD2 AS (Further Decision 2 AS)
Year2020
SessionJune
TopicDynamic Programming

4. A sequence \(\left\{ u _ { n } \right\}\), where \(n \geqslant 1\), satisfies the recurrence relation $$2 u _ { n } = u _ { n - 1 } - k n ^ { 2 } \text { where } 4 u _ { 2 } - u _ { 0 } = 27 k ^ { 2 }$$ and \(k\) is a non-zero constant.
Show that, as \(n\) becomes large, \(u _ { n }\) can be approximated by a quadratic function of the form \(a n ^ { 2 } + b n + c\) where \(a , b\) and \(c\) are constants to be determined. Please check the examination details below before entering your candidate information
Candidate surname
Other names Pearson Edexcel
Centre Number
Candidate Number Level 3 GCE
\includegraphics[max width=\textwidth, alt={}, center]{a9f21789-1c5b-42f5-9c5a-3b29d9346c46-05_122_433_356_991}



□ \section*{Thursday 14 May 2020} You may not need to use all of these tables.
\cline { 2 - 5 } \multicolumn{1}{c|}{}\(P\)\(Q\)\(R\)\(S\)
\(A\)
\(B\)
\(C\)
\(D\)
\cline { 2 - 5 } \multicolumn{1}{c|}{}\(P\)\(Q\)\(R\)\(S\)
\(A\)
\(B\)
\(C\)
\(D\)
\cline { 2 - 5 } \multicolumn{1}{c|}{}PQRS
A
B
C
D
\cline { 2 - 5 } \multicolumn{1}{c|}{}\(P\)\(Q\)\(R\)\(S\)
\(A\)
\(B\)
\(C\)
\(D\)
\cline { 2 - 5 } \multicolumn{1}{c|}{}PQRS
A
B
C
D
\cline { 2 - 5 } \multicolumn{1}{c|}{}PQRS
A
B
C
D
\cline { 2 - 5 } \multicolumn{1}{c|}{}\(P\)\(Q\)\(R\)\(S\)
\(A\)
\(B\)
\(C\)
\(D\)
\cline { 2 - 5 } \multicolumn{1}{c|}{}\(P\)\(Q\)\(R\)\(S\)
\(A\)
\(B\)
\(C\)
\(D\)
3. \begin{table}[h]
\cline { 3 - 5 } \multicolumn{2}{c|}{}Team B
\cline { 3 - 5 } \multicolumn{2}{c|}{}PaulQaasimRashid
\multirow{3}{*}{Team A}Mischa4- 62
\cline { 2 - 5 }Noel0- 26
\cline { 2 - 5 }Olive- 620
\captionsetup{labelformat=empty} \caption{Table 1}
\end{table} 4. .