Edexcel FM2 AS 2019 June — Question 4

Exam BoardEdexcel
ModuleFM2 AS (Further Mechanics 2 AS)
Year2019
SessionJune
TopicCentre of Mass 1

4. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{269e7aef-d7b7-4c3b-8d55-5a00696c97cc-14_888_1322_294_374} \captionsetup{labelformat=empty} \caption{Figure 2}
\end{figure} The uniform triangular lamina \(A B C D E\) is such that angle \(C E A = 90 ^ { \circ } , C E = 9 a\) and \(E A = 6 a\). The point \(D\) lies on \(C E\), with \(D E = 3 a\). The point \(B\) on \(C A\) is such that \(D B\) is parallel to \(E A\) and \(D B = 4 a\). The triangular lamina is folded along the line \(D B\) to form the folded lamina \(A B D E C F\), as shown in Figure 2. The distance of the centre of mass of the triangular lamina from \(D C\) is \(d _ { 1 }\)
The distance of the centre of mass of the folded lamina from \(D C\) is \(d _ { 2 }\)
  1. Explain why \(d _ { 1 } = d _ { 2 }\) The folded lamina is freely suspended from \(B\) and hangs in equilibrium with \(B A\) inclined at an angle \(\alpha\) to the downward vertical through \(B\).
  2. Find, to the nearest degree, the size of angle \(\alpha\).