Edexcel CP AS 2018 June — Question 6

Exam BoardEdexcel
ModuleCP AS (Core Pure AS)
Year2018
SessionJune
TopicArithmetic Sequences and Series

  1. (a) Use the standard results for \(\sum _ { r = 1 } ^ { n } r ^ { 2 }\) and \(\sum _ { r = 1 } ^ { n } r\) to show that
$$\sum _ { r = 1 } ^ { n } ( 3 r - 2 ) ^ { 2 } = \frac { 1 } { 2 } n \left[ 6 n ^ { 2 } - 3 n - 1 \right]$$ for all positive integers \(n\).
(b) Hence find any values of \(n\) for which $$\sum _ { r = 5 } ^ { n } ( 3 r - 2 ) ^ { 2 } + 103 \sum _ { r = 1 } ^ { 28 } r \cos \left( \frac { r \pi } { 2 } \right) = 3 n ^ { 3 }$$
V349 SIHI NI IMIMM ION OCVJYV SIHIL NI LIIIM ION OOVJYV SIHIL NI JIIYM ION OC