7. The vector equations of the lines \(L _ { 1 } , L _ { 2 } , L _ { 3 }\) are given by
$$\begin{aligned}
& \mathbf { r } = 3 \mathbf { i } + 2 \mathbf { j } + \mathbf { k } + \lambda ( 2 \mathbf { i } + n \mathbf { j } + \mathbf { k } )
& \mathbf { r } = 5 \mathbf { i } - 3 \mathbf { j } - 4 \mathbf { k } + \mu ( 3 \mathbf { i } + \mathbf { j } - 3 \mathbf { k } )
& \mathbf { r } = 6 \mathbf { i } - 3 \mathbf { j } + 2 \mathbf { k } + v ( p \mathbf { i } + 3 \mathbf { j } + 4 \mathbf { k } )
\end{aligned}$$
respectively, where \(n\) and \(p\) are constants.
The line \(L _ { 1 }\) is perpendicular to the line \(L _ { 2 }\). The line \(L _ { 1 }\) is also perpendicular to the line \(L _ { 3 }\).
- Show that the value of \(n\) is - 3 and find the value of \(p\).
- Find the acute angle between the lines \(L _ { 2 }\) and \(L _ { 3 }\).