| Exam Board | WJEC |
| Module | Unit 3 (Unit 3) |
| Year | 2024 |
| Session | June |
| Topic | Reciprocal Trig & Identities |
2. (a) Find all values of \(\theta\) in the range \(0 ^ { \circ } < \theta < 360 ^ { \circ }\) satisfying
$$3 \cot \theta + 4 \operatorname { cosec } ^ { 2 } \theta = 5 .$$
(b) By writing \(24 \cos x - 7 \sin x\) in the form \(R \cos ( x + \alpha )\), where \(R\) and \(\alpha\) are constants with \(R > 0\) and \(0 ^ { \circ } < \alpha < 90 ^ { \circ }\), solve the equation
$$24 \cos x - 7 \sin x = 16$$
for values of \(x\) between \(0 ^ { \circ }\) and \(360 ^ { \circ }\).