WJEC Unit 2 2022 June — Question 1

Exam BoardWJEC
ModuleUnit 2 (Unit 2)
Year2022
SessionJune
TopicNon-constant acceleration

1 In this question, \(\mathbf { i }\) and \(\mathbf { j }\) represent unit vectors due east and due north respectively. Sarah is going for a walk. She leaves her house and walks directly to the shop. She then walks directly from the shop to the park. Relative to her house:
  • the shop has position vector \(\left( - \frac { 2 } { 3 } \mathbf { j } \right) \mathrm { km }\),
  • the park is 2 km away on a bearing of \(060 ^ { \circ }\).
    a) Show that the position vector of the park relative to the house is \(( \sqrt { 3 } \mathbf { i } + \mathbf { j } ) \mathrm { km }\).
    b) Determine the total distance walked by Sarah from her house to the park.
    c) By considering a modelling assumption you have made, explain why the answer you found in part (b) may not be the actual distance that Sarah walked.
\(\mathbf { 1 }\)\(\mathbf { 1 }\)
A particle \(P\) moves along the \(x\)-axis so that its velocity \(v \mathrm {~ms} ^ { - 1 }\) at time \(t\) seconds \(( t \geqslant 0 )\) is given by $$v = 3 t ^ { 2 } - 24 t + 36$$ a) Find the values of \(t\) when \(P\) is instantaneously at rest.
b) Calculate the total distance travelled by the particle \(P\) whilst its velocity is decreasing.
This paper (1 questions)
View full paper